Class / Patent application number | Description | Number of patent applications / Date published |
244159400 | Modular and assembled in space | 7 |
20120318926 | Inflatable airlock - An inflatable airlock for use with a spacecraft is disclosed. The airlock has a substantially cylindrical shaped layered shell comprised of an outer meteoroid shield layer, a restraint layer under the meteoroid shield, and an air barrier layer under the restraint layer. There is a door arrangement attached to the airlock and the airlock is adapted to being attached to a spacecraft bulkhead that also includes a door. When inflated, a person can open the spacecraft bulkhead door and pass through from the spacecraft into the airlock or vice versa. When the atmosphere is removed from the airlock, a person can pass from the airlock into space or vice versa. | 12-20-2012 |
20130327894 | Spacercraft Shield - A spacecraft carbon nanotube shield is disclosed. Shield segments are produced in a facility in space. The segments are transported from the facility to a vicinity of a spacecraft hull. The segments are assembled over the hull to substantially cover an area of the hull. | 12-12-2013 |
20140263843 | Universal Spacecraft Architecture - A system and method for assembling a spacecraft in orbit using orbiting modules. Each module has a function such as fuel, transport, communication and payload. A command and control system and logic assembles the modules for missions. After use the modules may be disassembled and parked in orbit. The assembly of modules for a mission is controlled by a logic that assesses the mission requirement, module status and capability and matches resources. The referenced command and control system and logic is used to maneuver vehicles and modules and controls missions. Communications between and among modules and signal sources are facilitated by a language protocol that has a library of commands and responses accessible by signals using divergent communications languages. The protocol also converts common programming language to a language compatible for use by a recipient module, logic or communication satellite or ground station. | 09-18-2014 |
20140319282 | Space station configuration - An inflatable module space station is disclosed. The module has an avionics architecture designed for the module serving as a space station. The module also has at least one hundred and eighty cubic meters of internal habitable volume and at least one window. The module is capable of supporting at least two humans in a zero gravity environment for at least one month. There is also a propulsion bus designed for a space station and attached to the module. Furthermore, there is a docking mechanism designed for a space station and attached to the module. The module is capable of orbiting a mass like a planet or moon. The space station can be one or multiple expandable modules. | 10-30-2014 |
20160376037 | Large-Scale Space-Based Solar Power Station: Packaging, Deployment and Stabilization of Lightweight Structures - A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom, and/or compactible structures and deployment mechanisms used to form and deploy such satellite modules and power generation tiles associated therewith are provided. Each satellite module and/or power generation tile may be formed of a compactable structure and deployment mechanism capable of reducing the payload area required to deliver the satellite module to an orbital formation within the space-based solar power station and reliably deploy it once in orbit. | 12-29-2016 |
244159500 | Foldable | 1 |
20110108670 | Active Tie-Rod System Making it Possible to Hold and Smoothly Release Space Appendages - The present invention consists of an active tie-rod device making it possible to hold and smoothly release space appendages. The active tie-rod device includes a fixed base, an active tie-rod screwed into the said fixed base, a retractable release mechanism for the active tie-rod making it possible, in the stowed position, to hold the said active tie-rod in place, and a nut for tensioning the assembly. The active tie-rod includes an internal heater, and consisting at least partially of a material with a high coefficient of thermal expansion, so that, under the action of the internal heater, the active tie-rod can expand, retracting the retractable release mechanism for the active tie-rod, and consequently allowing the smooth release of the said space appendages. | 05-12-2011 |
244159600 | Including use of launch vehicle part | 1 |
20090173831 | Method for manufacturing a solar module in orbit - A geosynchronous Solar Power Satellite System is created by an artificial gravity, closed ecology, multiple use structure in low earth orbit that manufactures modular solar power panels and transmitter arrays. This facility takes empty fuel tanks and expended rocket boosters from launch vehicles that are sent into low earth orbit, and re-manufactures them into structural components. These components are mated to solar cells that are launched from earth. The modular solar panels are transported to geosynchronous orbit by vehicles with ion engines, where the panels are mated to other solar panels to collect power. Structural components are also mated to transmitter elements launched from earth. These are likewise transported to geosynchronous orbit. They are mated to the solar power collecting panels and they beam the collected power back to earth. | 07-09-2009 |