Class / Patent application number | Description | Number of patent applications / Date published |
244300200 | Inertial | 12 |
20090127377 | Onboard guidance method for ballistic missiles - A guidance method for a powered ballistic missile involves using an onboard computer to numerically simulate the flight path of the missile in real time, using a model with at least 3 degrees of freedom. The results of this simulation are used to update in real time an aim point and/or a predicted intercept point. An iterative process may be used in adjusting the aim point and/or the predicted intercept point. The process may be carried out until a specified number of steps have been completed, and/or until a specified heading error threshold of the aim point and a specified time of flight threshold have been achieved. The use of real time updating of an aim point of the missile advantageously takes into account variations in missile velocity and position due to individual variations in the rocket motor of the missile. | 05-21-2009 |
20100019078 | MISSILE GUIDANCE SYSTEM - A missile guidance system and method for guiding a missile, mainly horizontally flying, to pass a target at a desired passage height. | 01-28-2010 |
20100133374 | PROJECTILE NAVIGATION ENHANCEMENT METHOD - A projectile, such as a missile, rolls during at least a portion of its flight, while retaining its roll reference to enable navigation during the rolling period of flight. The roll reference may be retained by using a sensor, such as magnetometer, to periodically check and correct the roll reference. Alternatively or in addition the missile may alternate roll directions, for example varying roll rate in a substantially sinusoidal function. By rolling the missile inaccuracies in an inertial measurement unit (IMU) of the missile may be ameliorated by being to a large extent canceled out by the changes in orientation of the missile as the missile rolls. This enables use of IMUs with lower accuracy than would otherwise be required to obtain accurate flight. Thus accurate flight may be accomplished with less costly IMUs, without sacrificing the ability to navigate. | 06-03-2010 |
20100176238 | STABILITY MULTIPLEXED AUTOPILOT - Rolling airframe projectile guidance and stability systems are disclosed. Flight control surfaces, such as canards and/or tail fins are attached to a projectile airframe that is designed to roll during flight. Stepper motors are attached to the flight control surfaces and move the flight control surfaces in discrete increments. A control system generates signals that control the flight control surfaces. The control system may include a neural network that is trained to generate control signals in response to received inputs. | 07-15-2010 |
20110049289 | METHOD OF CONTROLLING MISSILE FLIGHT USING ATTITUDE CONTROL THRUSTERS - A method of controlling flight of a missile includes using gyroscopes, such as pitch rate gyroscopes, to sense when a factor based on the angular rate of change of the missile exceeds a threshold value. One the threshold value is exceeded, a decision may be made to use one or more compensation thrusters to reduce the angular rate of change. The use of the compensation thrusters may correct residual angular velocities from a pitch over maneuver used to put the missile on an intended course. In addition, the compensation thrusters may be used to compensate for errors in missile heading induced after the pitch over maneuver, such as induced by misalignment of thrust provided by a main rocket motor of the missile. Multiple compensation thrusters may be used to compensate for angular changes in the pitch and yaw directions. | 03-03-2011 |
20110127365 | INERTIAL MEASUREMENT UNIT (IMU) MULTI-POINT THERMAL CONTROL - A thermally controlled gas bearing supported inertial measurement unit (IMU) system is provided. The system comprises a sensor assembly enclosing one or more sensors and a plurality of heating elements, wherein each of the plurality of heating elements is proximal to the sensor assembly. The system also comprises a plurality of temperature sensors configured to determine a temperature of a region of the sensor assembly and a control unit configured to adjust a temperature of at least one of the plurality of heating elements based on feedback from the at least one temperature sensor. | 06-02-2011 |
20110290932 | SYSTEM AND METHOD FOR NAVIGATING AN OBJECT - One example embodiment relates to a method of navigating an object. The method includes detecting when the object accelerates through the speed of sound and maneuvering the object based on when the object accelerates through the speed of sound. Another example embodiment relates to a system for navigating an object. The system includes a detector within the object. The detector determines when the object accelerates through mach one. The system further includes a guidance system within the object. The guidance system adjusts the flight of the object based on data received from the detector. | 12-01-2011 |
20120025007 | PROJECTILE WITH INERTIAL SENSORS ORIENTED FOR ENHANCED FAILURE DETECTION - A guided projectile may include a projectile body, an inertial measurement unit disposed within the projectile body, one or more control surfaces extendible from the projectile body, and a controller which controls the one or more control surfaces in response, at least in part, to measurement data received from the inertial measurement unit. The inertial measurement unit may include sensors to measure motion parameters relative to first, second, and third mutually orthogonal axes, wherein each of the first, second and third mutually orthogonal axes is oblique to a longitudinal axis of the projectile body | 02-02-2012 |
20120025008 | Projectile With Inertial Measurement Unit Failure Detection - A guided projectile may include a projectile body. An inertial measurement unit may be disposed within the projectile body, the inertial measurement unit including sensors to measure motion parameters relative to first, second, and third mutually orthogonal axes. Each of the first, second, and third mutually orthogonal axes may form an oblique angle with a longitudinal axis of the projectile body. A controller may be configured to control a trajectory of the guided projectile in response, at least in part, to measurement data received from the inertial measurement unit. | 02-02-2012 |
20120043410 | MISSILE NAVIGATION METHOD - A missile has a pair of systems to provide acceleration information during flight. The primary system is a microelectromechanical systems (MEMS) inertial measurement unit (IMU) that provides accurate rate sensor output, such as providing pitch and yaw rates, at low cost, over a wide range of conditions. However MEMS IMUs are susceptible to temporary incorrect responses when subjected to shocks, such as acoustic-range shocks, for instance in the range of 10-20 kHz. The missile includes a secondary system to temporarily provide acceleration data during the periods following shocks, when the MEMS IMU does not provide valid (reliable or usable) rate sensor output, for use in estimating pseudo pitch and yaw rates. The secondary system may be an accelerometer that does not provide navigation-quality acceleration data, but does provide a sufficiently accurate response in order to maintain stable flight during the post-shock period. | 02-23-2012 |
20120256038 | SYSTEMS AND METHODS FOR TARGETING A PROJECTILE PAYLOAD - A projectile's payload is oriented (independently or by orientation of the projectile itself) toward a target just prior to firing (e.g., detonation of the payload), e.g., for munitions providing an increased kill and casualty area and a fire “in defilade” (left, right, backwards or at any angle) capability. | 10-11-2012 |
20140158813 | METHOD FOR AUTOMATICALLY MANAGING A PITCH RATE GYROSCOPE MOUNTED ON A FLYING DEVICE - The invention relates to a flying device ( | 06-12-2014 |