Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Etching inorganic substrate

Subclass of:

216 - Etching a substrate: processes

216058000 - GAS PHASE ETCHING OF SUBSTRATE

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
216074000 Etching inorganic substrate 19
20080197111METHOD FOR FABRICATING FLASH MEMORY DEVICE - A method for fabricating a nonvolatile memory device includes forming a gate stack over a substrate, the gate stack including an aluminum oxide layer as a dielectric layer, and etching the aluminum oxide layer of the gate stack using a gas containing silicon.08-21-2008
20110049103METHODS OF MANUFACTURING A HONEYCOMB EXTRUSION DIE - Methods of manufacturing a honeycomb extrusion die comprise the steps of coating at least a portion of a die body with a layer of conductive material and modifying the die body with an electrical discharge machining technique. The method then further includes the step of chemically removing the layer of conductive material, wherein the residual material from the electrical discharge machining technique is released from the die body.03-03-2011
216075000 Substrate contains elemental metal, alloy thereof, or metal compound 7
20120312781METHOD OF LASER MARKING A BEARING COMPONENT WITH VISUALLY UNDETECTABLE MARK; BEARING COMPONENT WITH SUCH MARKING; METHOD OF AUTHENTIFICATION SUCH MARKING - The present invention relates to a method of manufacturing a bearing component, in which a visually undetectable identification mark is created on a surface of the component by means of laser marking performed in a protective gas environment. The protective gas environment prevents the formation of a visible oxide layer, while the temperatures induced at the component surface and below the component surface, due to the laser marking, are sufficient to alter the microstructure of the bearing steel from which the component is made. The altered microstructure is revealable by applying an etchant to the visually undetectable mark, thereby allowing authentication of the bearing component.12-13-2012
20140217065MULTI-STEP METHOD AND APPARATUS FOR ETCHING COMPOUNDS CONTAINING A METAL - A system and method for etching a material, including a compound having a formulation of XYZ, wherein X and Y are one or more metals and Z is selected from one or more Group 13-16 elements, such as carbon, nitrogen, boron, silicon, sulfur, selenium, and tellurium, are disclosed. The method includes a first etch process to form one or more first volatile compounds and a metal-depleted layer and a second etch process to remove at least a portion of the metal-depleted layer.08-07-2014
20150345029METAL REMOVAL - Methods are described herein for etching metal films, such as cobalt and nickel, which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl12-03-2015
216076000 Etching of substrate containing at least one compound having at least one oxygen atom and at least one metal atom 3
20120205344Copper plating method - A method of activating a copper seed layer during a plating process is disclosed that comprises application of vapor generated by an ultrasonic wave nebulizer. The energized vapor droplets include water and a weak organic acid such as acetic acid, lactic acid, citric acid, uric acid, oxalic acid, or formic acid that have a vapor pressure proximate to that of water. The weak organic acid preferably has a pKa high enough to avoid Cu etching but is sufficiently acidic to remove copper oxide at a rate that is compatible with high throughput manufacturing. In one embodiment, weak acid/water vapor is applied to a substrate in a spin bowl and is followed by a deionized water rinse step in the same spin bowl. Improved wettability results in improved uniformity in subsequently plated copper films. Considerable cost savings is realized as a result of reduced chemical consumption and higher product yields.08-16-2012
20150129546PLASMA-FREE METAL ETCH - Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. No plasma excites the halogen-containing precursor either remotely or locally in embodiments.05-14-2015
20150345030Copper Plating Method - A method of removing copper oxide from copper surfaces is disclosed that comprises application of vapor generated by an ultrasonic wave nebulizer. The energized vapor droplets include water and a weak organic acid such as acetic acid, lactic acid, citric acid, uric acid, oxalic acid, or formic acid that have a vapor pressure proximate to that of water. The weak organic acid preferably has a pKa high enough to avoid Cu etching but is sufficiently acidic to remove copper oxide at a rate that is compatible with high throughput manufacturing. In one embodiment, weak acid/water vapor is applied to a substrate in a spin bowl and is followed by a deionized water rinse step in the same spin bowl. Improved wettability results in improved uniformity in subsequently plated copper films. Considerable cost savings is realized as a result of reduced chemical consumption and higher product yields.12-03-2015
216077000 Etching of substrate containing elemental aluminum, or an alloy or compound thereof 1
20140008327MOVABLE JOINT THROUGH INSERT - Provided in one embodiment is a method of forming a movable joint or connection between parts that move with respect to one another, wherein at least one part is at least partially enclosed by at least one second part. The method includes positioning an etchable material over an at least one first part, molding or forming an at least one second part over at least the etchable material, and removing the etchable material.01-09-2014
216079000 Etching silicon containing substrate 9
20080308529Polymerase chain reaction kit and method of manufacturing the same - The present invention provides a kit employed for polymerase chain reaction. The kit has a cavity and a flow channel on a substrate. The flow channel is separated from the cavity by at least a barrier formed along the cavity. Such a structure allows the cavity to be filled with a sample solution even in minute quantities. At the same time, the structure can provide a sample solution with a rapid temperature-control. The structure can therefore contribute to accelerated polymerase chain reaction.12-18-2008
20100176087PHOTOMASK MAKING METHOD, PHOTOMASK BLANK AND DRY ETCHING METHOD - A photomask is manufactured by providing a photomask blank comprising a transparent substrate, a phase shift film, and a light-shielding film, the phase shift film and the light-shielding film including silicon base material layers, a N+O content in the silicon base material layer of the phase shift film differing from that of the light-shielding film, and chlorine dry etching the blank with oxygen-containing chlorine gas in a selected O/C1 ratio for selectively etching away the silicon base material layer of the light-shielding film.07-15-2010
20130043213METHOD FOR PRODUCING SINGLE-CRYSTAL DIAMOND MOVABLE STRUCTURE - The utilization of single crystal diamond in a nano- or micro-machine (N/MEMS) device is difficult, and there has been no report on such utilization. The reason for this resides in that it is difficult to grow single crystal diamond on an oxide which is a sacrifice layer. In a conventional technique, a cantilever or the like is produced by forming polycrystalline diamond or nanodiamond on an oxide as a sacrifice layer, but the mechanical performance, vibration characteristics, stability, and reproducibility of the produced cantilever or the like are unsatisfactory. In the present invention, utilizing the fact that the high concentration ion-implanted region in a diamond substrate 02-21-2013
20140144878METHOD OF FORMING A SILICON CARBIDE BODY - A method of forming a ceramic article includes providing a ceramic body comprising silicon carbide, and treating the ceramic body in an atmosphere comprising an oxidizing material to remove a portion of the ceramic body through a chemical reaction between a portion of the ceramic body and the oxidizing material.05-29-2014
20150060405METHOD FOR MANUFACTURING MICROSTRUCTURE - A method is provided for producing a microstructure. The method includes the first step of forming a supporting layer on a base substrate including a silicon substrate provided with recessed sections at a first surface thereof and a metal structure filling the recessed sections so as to come in contact with the metal structure at the first surface, the second step of forming a structure including the metal structure and the supporting layer by selectively etching the silicon substrate to expose at least the surface of the metal structure opposite the surface in contact with the supporting layer from the silicon substrate, and the third step of selectively etching the supporting layer of the metal structure.03-05-2015
20150090693FILM FORMATION APPARATUS AND FILM FORMATION METHOD - A film formation apparatus according to an embodiment includes: a film formation chamber performing film formation on a substrate; a cylindrical liner provided inside of a sidewall of the film formation chamber; a process-gas supply unit provided at a top of the film formation chamber and having a first gas ejection hole supplying a process gas to inside of the liner; a first heater provided outside the liner in the film formation chamber and heating the substrate from above; a second heater heating the substrate from below; and a shielding gas supply unit having a plurality of second gas ejection holes supplying a shielding gas to a position closer to a sidewall of the film formation chamber than a position of the first gas ejection hole.04-02-2015
20160079081ETCHING METHOD AND STORAGE MEDIUM - There is provided an etching method, including: disposing a target substrate within a chamber, the target substrate having a first silicon oxide film formed on a surface of the target substrate and a second silicon oxide film formed adjacent to the first silicon oxide film, the first silicon oxide film being formed by an atomic layer deposition method and the second silicon oxide film being formed by a method other than the atomic layer deposition method; and selectively etching the first silicon oxide film with respect to the second silicon oxide film by supplying one selected from the group consisting of HF gas and alcohol gas; HF gas and water vapor; HF gas, F03-17-2016
216080000 Silicon containing substrate is glass 2
20090166330Method of Etching a device using a hard mask and etch stop layer - A method of etching a device in one embodiment includes providing a silicon carbide substrate, forming a silicon nitride layer on a surface of the silicon carbide substrate, forming a silicon carbide layer on a surface of the silicon nitride layer, forming a silicon dioxide layer on a surface of the silicon carbide layer, forming a photoresist mask on a surface of the silicon dioxide layer, and etching the silicon dioxide layer through the photoresist mask.07-02-2009
20090261066APPARATUS AND METHOD FOR DRY ETCHING - The present invention herein provides an apparatus and a method for dry etching, which can solve such a problem that an object to be processed undergoes cracking during the etching procedures due to the heat deformation thereof and thermal shocks, possibly encountered when subjecting, to dry etching procedures, the object having a high thermal expansion coefficient. A dry etching apparatus is provided with an electrode structure having a convex-shaped surface, the convex-shape is one concentric with the cross section of the electrode structure and the height thereof falls within the range of from 0.2 to 1.0 mm. An object consisting of a material having a thermal expansion coefficient of not less than 30×1010-22-2009
216081000 Etching elemental carbon containing substrate 1
20130186860Formation of Graphene on a Surface - Methods of forming a graphene material on a surface are presented. A metal material is disposed on a material substrate or material layer and is infused with carbon, for example, by exposing the metal to a carbon-containing vapor. The carbon-containing metal material is annealed to cause graphene to precipitate onto the bottom of the metal material to form a graphene layer between the metal material and the material substrate/material layer and also onto the top and/or sides of the metal material. Graphene material is removed from the top and sides of the metal material and then the metal material is removed, leaving only the graphene layer that was formed on the bottom of the metal material. In some cases graphene material that formed on one or more side of the sides of the metal material is not removed so that a vertical graphene material layer is formed.07-25-2013

Patent applications in all subclasses Etching inorganic substrate

Website © 2025 Advameg, Inc.