Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Semipermeable membrane

Subclass of:

210 - Liquid purification or separation

210348000 - FILTER

210500100 - Material

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
210500270 Organic 181
210500230 Hollow fiber or cylinder 112
210500250 Metal containing 37
210500220 Isotropically pored 10
210500260 Glass 6
210500240 Antithrombogenic coating or membrane 2
20090242477Modified Substrate and Process for Production Thereof - The present invention is characterized in that a base material comprises ester groups in the main chain and/or in the side chain(s), and comprises a polymer having hydrophobic groups. Particularly, the hydrophobic groups can be introduced by irradiating the base material with a radiation during the base material contacts an aqueous solution of a monohydric alcohol or an aqueous solution of an alcohol having not less than 2 hydroxyl groups, which is a monomer or a polymer, and which has one or more carbon atoms between the carbon atoms to each of which the hydroxyl group is bound in the monomer or in each monomer constituting the polymer.10-01-2009
20100133170POLYSULFONE-BASED BLOOD TREATMENT MEMBRANE AND METHOD OF PRODUCING THE SAME - A polysulfone-based blood treatment membrane that exhibits excellent antioxidant properties, excellent long-term storage stability, and a practical strength, and ensures high productivity, a polysulfone-based blood treatment membrane that exhibits excellent antioxidant properties and long-term storage stability, rarely allows endotoxins to enter a treatment liquid, exhibits a practical strength, and ensures high productivity, and a method of producing the same. A polysulfone-based blood treatment membrane includes a polysulfone-based resin, a hydrophilic polymer, and a lipophilic antioxidant, the membrane containing the lipophilic antioxidant in an amount of 30 to 76 mg per gram of the membrane, and the total amount of the lipophilic antioxidant present on the surface of the membrane being 4 to 25 mg per gram of the membrane. Another polysulfone-based blood treatment membrane contains a lipophilic antioxidant in an amount of 30 to 76 mg per gram of the membrane, wherein the inner surface of the membrane has a TOF-SIMS normalized peak intensity of the lipophilic antioxidant of 1.8×1006-03-2010
Entries
DocumentTitleDate
20080203011Support Having an Altered Porosity and Membrane for the Tangential Flow Filtration - A porous support (08-28-2008
20080308491Electrolyte - The invention relates to membranes made from polybenzimidazole, doped with low-molecular-weight phosphonic acids and optionally with phosphoric acids. Membranes, doped with phosphoric acid and an aminophosphonic acid have an increased proton conductivity with relation to doping with only one of the components.12-18-2008
20090039013FILTER MEDIUM FOR LIQUID FILTRATION AND PROCESS FOR PRODUCING THE SAME - A filter medium for liquid filtration of fine texture exhibiting high strength when wetted with water, which filter medium is comprised of a wet-laid nonwoven fabric. There is provided a filter medium for liquid filtration comprised of a wet-laid nonwoven fabric, characterized in that through blending of 0.5 to 40 wt. % of unbeaten natural fibers, it exhibits a very fine texture, a lowering ratio, calculated from bursting strength in ordinary state and bursting strength when wetted with water, of 30% or below, and a bursting strength, had when wetted with water, of 300 kPa or greater.02-12-2009
20090045133Low Pressure Drop Cyst Filter - A long life, low pressure drop, cyst reduction water filter includes two active layers, the first comprising a non-woven fiber layer of nominal submicron porosity that retains cysts, but provides a good flow rate, and an upstream protective layer of a different non-woven fiber layer that captures particulates which would otherwise overwhelm and plug the cyst reduction layer.02-19-2009
20090050558Process for producing composite reverse osmosis membrane - Provided is a process for continuously producing a composite reverse osmosis membrane comprising a polyamide skin layer and a porous support for supporting the polyamide skin layer, the method comprising: A) applying an aqueous solution α containing a compound having two or more reactive amino groups to form a covering layer of an aqueous solution on the porous support while moving the porous support; B) permeating the aqueous solution α in micro pores of the porous support by holding the covering layer on the porous support for 0.2 to 15 seconds; C) removing the covering layer while holding the aqueous solution α within the micro pores of the porous support; and D) forming the polyamide skin layer by applying an organic solution β containing a polyfunctional acid halide onto the surface of the porous support to make the aqueous solution α contact the organic solution β for interfacial polymerization.02-26-2009
20090218275MEMBRANE STRUCTURE AND METHOD OF MAKING - A membrane structure is provided. The membrane structure includes a polymer layer having a plurality of pores; and a ceramic layer disposed on the polymer layer. The ceramic layer has a plurality of substantially unconnected pores. Each of the substantially unconnected pores is in fluid communication with at least one of the pores of the polymer layer. A method of manufacturing a membrane structure is provided. The method includes the steps of providing a polymer layer having a plurality of pores; and disposing a ceramic layer on the polymer layer. Disposing a ceramic layer includes depositing a metal layer on the polymer layer; and anodizing the metal layer to convert the metal layer into a porous layer. At least one of the depositing step and the anodizing step is performed as a continuous process. Alternatively, at least one of the depositing and the anodizing step is performed as a batch process.09-03-2009
20090308804Fouling and Scaling Resistant Nano-Structured Reverse Osmosis Membranes - In one embodiment, a method of modifying a surface of a membrane includes exposing the surface to an impinging atmospheric pressure plasma source to produce an activated surface, and exposing the activated surface to a solution including a vinyl monomer. In another embodiment, a method of manufacturing a desalination membrane includes treating a surface of the membrane with an impinging atmospheric plasma source for an optimal period of time and rf power, and exposing the surface to an aqueous solution containing a vinyl monomer. In another embodiment, an apparatus includes a membrane having a surface, and polymer chains terminally grafted onto the surface of the membrane.12-17-2009
20100147763MODIFIED POROUS MEMBRANES, METHODS OF MEMBRANE PORE MODIFICATION, AND METHODS OF USE THEREOF - The present invention describes a method of modifying pores of a porous membrane, comprising contacting the membrane with a pore modifying agent, wherein the pore modifying agent modifies the pore opening at the first surface of the membrane differently than the pore opening at the second surface of the membrane. The invention also describes a porous membrane having a first surface and a second surface, comprising a plurality of pores extending between the first and second surfaces, wherein the pores have been modified by a pore modifying agent such that the pore opening at one membrane surfaces is distinct from the pore opening of the other membrane surface, or the pore shape is distinct at one or more locations between the first and second surfaces.06-17-2010
20100155325PARTICLE-TEMPLATED MEMBRANES, AND RELATED PROCESSES FOR THEIR PREPARATION - A method for the formation of a membrane is described. A collection of substantially spherical particles formed from a selected material is contacted with at least one reactive material. The reactive material is cured or otherwise polymerized by various techniques, so that it forms a matrix that substantially surrounds and contains the particles. A portion of the particle material is then removed, so that the matrix contains a pattern of pores that are permeable to selected substances in solution. In some instances, the matrix is formed by an interfacial reaction between at least two reactive materials. Related filtration membranes are also described.06-24-2010
20100206804NONWOVEN MATERIAL WITH PARTICLE FILLER - A ply includes a fibrous nonwoven web fabric forming a foundational structure, wherein the foundational structure includes fibers forming first pores and is partially filled with particles, wherein the particles at least partially fill the first pores so as to form regions filled with particles, wherein the particles in the filled regions form second pores, and wherein an average diameter of the particles is greater than an average pore size of more than 50% of the second pores.08-19-2010
20100282668FUSED NANOSTRUCTURE MATERIAL - Disclosed herein is a nanostructured material comprising carbon nanotubes fused together to form a three-dimensional structure. Methods of making the nanostructured material are also disclosed. Such methods include a batch type process, as well as multi-step recycling methods or continuous single-step methods. A wide range of articles made from the nanostructured material, including fabrics, ballistic mitigation materials, structural supports, mechanical actuators, heat sink, thermal conductor, and membranes for fluid purification is also disclosed.11-11-2010
20110042301INORGANIC MEMBRANE DEVICES AND METHODS OF MAKING AND USING THE SAME - An inorganic membrane device is provided. The device comprises a substrate having a network of pores, and a membrane layer at least partially coupled to the substrate and having a plurality of pores, wherein the pores have an aspect ratio in a range from about 1:2 to about 1:100.02-24-2011
20110062078MEMBRANE REGENERATION - The invention provides a method of regenerating a fouled membrane removed from a process line. The membrane is regenerated by immersing at least a portion of it into an agitated enzyme solution. The agitation is provided by a gas injected into the enzyme solution and is thought to assist enzyme in the enzyme solution to contact the foulant. Also disclosed is a membrane regenerated by the method.03-17-2011
20110139707NANOPOROUS INORGANIC MEMBRANES AND FILMS, METHODS OF MAKING AND USAGE THEREOF - A method for fabricating isolated pores in an inorganic membrane includes the steps of patterning the inorganic membrane to selectively expose a portion of the membrane, forming a plurality of tracks of material damage in the exposed portion of the inorganic membrane by irradiation with energetic ions, and chemically etching the track damaged material to define the pores through the inorganic membrane with a predetermined geometrically defined cross sectional shape and with a controlled diameter range from less than 1 nanometer and up to micrometer scale.06-16-2011
20110139708COMPOSITE SEMIPERMEABLE MEMBRANE AND MANUFACTURING METHOD THEREFOR - An object of the present invention is to provide a composite semipermeable membrane which has excellent chemical resistance, separation performance, and water permeability, and the composite semipermeable membrane has the following structure.06-16-2011
20110168626REVERSE OSMOSIS MEMBRANE, REVERSE OSMOSIS MEMBRANE APPARATUS, AND HYDROPHILIC TREATMENT METHOD FOR REVERSE OSMOSIS MEMBRANE - A reverse osmosis membrane that can maintain high permeability for a longer time, a reverse osmosis membrane apparatus, and a hydrophilic treatment method for a reverse osmosis membrane. A reverse osmosis membrane to which poly(vinyl alcohol) is absorbed, wherein the poly(vinyl alcohol) is an ionic poly(vinyl alcohol). Preferably, adsorption of a cationic PVA to the reverse osmosis membrane is followed by adsorption of an anionic PVA. More preferably, an ionic polymer other than PVA is also absorbed to the reverse osmosis membrane. A reverse osmosis membrane apparatus including the reverse osmosis membrane. A hydrophilic treatment method for a reverse osmosis membrane, involving bringing the reverse osmosis membrane into contact with an ionic poly(vinyl alcohol).07-14-2011
20110168627MEMBRANE MODULE - The present invention relates to a method for curing adhesives used in the manufacture of membrane modules containing polymeric membranes, particularly polyimide based membranes used for the nanofiltration or ultrafiltration of solutes dissolved in organic solvents using microwaves. To maximise the chemical resistance of the adhesive used in these organic solvent applications, it must be as fully reacted and crosslinked (“cured”) as possible. Typically, thermal processing (heating) of the entire membrane module is used to cure the adhesives. However, the time and temperature required to achieve this high degree of completion of reaction may damage the separation performance of the membrane contained within the membrane module. In one particular aspect, this process utilises microwaves to preferentially promote the curing of epoxy adhesives over the general heating of the membrane module.07-14-2011
20110174728POLYSULFONE POLYMERS AND MEMBRANES FOR REVERSE OSMOSIS, NANOFILTRATION AND ULTRAFILTRATION - The invention provides modified polysulfones substituted in one or more of the phenyl rings by functional groups and membranes composed of the modified polysulfones. Also provided are methods for the preparation of monodispersed nanoporous polymeric membranes. The membranes are useful for reverse osmosis, nanofiltration, and ultrafiltration, particularly for purification of water.07-21-2011
20110272345CRYSTALLINE POLYMER MICROPOROUS MEMBRANE, METHOD FOR PRODUCING THE SAME, AND FILTRATION FILTER - The present invention provides a method for producing a crystalline polymer microporous membrane, which includes asymmetrically heating a film composed of crystalline polymer and being fixed, by a heating unit at a temperature equal to or higher than the melting point of a burned product of the crystalline polymer, so that one surface of the film is heated while being in contact with the heating unit, so as to form a semi-burned film having a temperature gradient in a thickness direction of the film composed of crystalline polymer; and stretching the semi-burned film.11-10-2011
20110284456Self-Assembled Surfactant Structures - Stabilized surfactant-based membranes and methods of manufacture thereof. Membranes comprising a stabilized surfactant mesostructure on a porous support may be used for various separations, including reverse osmosis and forward osmosis. The membranes are stabilized after evaporation of solvents; in some embodiments no removal of the surfactant is required. The surfactant solution may or may not comprise a hydrophilic compound such as an acid or base. The surface of the porous support is preferably modified prior to formation of the stabilized surfactant mesostructure. The membrane is sufficiently stable to be utilized in commercial separations devices such as spiral wound modules.11-24-2011
20110297612POROUS MEMBRANES WITH MULTIPLE ZONES HAVING DIFFERENT PORE SIZES - A porous membrane that includes a first zone, the first zone including a crystallizable polymer; and a first nucleating agent, the first nucleating agent having a first concentration in the first zone, the first zone having a first average pore size; and a second zone, the second zone including a crystallizable polymer; and a second nucleating agent, the second nucleating agent having a second concentration in the second zone, the second zone having a second average pore size, wherein the crystallizable polymer is the same in the first zone and second zone, wherein the first average pore size is not the same as the second average pore size, wherein the first nucleating agent and the second nucleating agent are the same or different, wherein the first concentration and the second concentration agent are the same or different and with the proviso that the first nucleating agent and the first concentration are not the same as the second nucleating agent and the second concentration. Methods of making membranes are also disclosed.12-08-2011
20120024775FILTER - The present invention relates to a membrane filter comprising a plurality of pores of substantially the same size. The membrane filter may be supported by at least one support (e.g. in the form of a support grid) and is able to handle a large flux and pressure in use. The invention also relates to a method of fabrication of such a filter membrane using a solvable mold.02-02-2012
20120097603PROCESS FOR FABRICATING MEMBRANE FILTERS, AND MEMBRANE FILTERS - The invention provides a process for fabricating a membrane filter that can stand up to filtration of nanometer-scaled fine particles or organic molecules, and a membrane filter having that filtration feature.04-26-2012
20120125835Process for the preparation of ethylene/chlorotrifluoroethylene polymer membranes - The invention relates to a process for the production of membranes based on ethylene/chlorotrifluoroethylene polymers having a melting temperature not exceeding 200° C. The process relies on the diffusion induced phase separation of the ethylene/chlorotrifluoroethylene polymer from a solution and comprises the steps of providing a solution comprising an ethylene/chlorotrifluoroethylene polymer having a melting temperature not exceeding 200° C. in a solvent; casting the polymer solution into a film; immersing the film in a non-solvent bath to precipitate the polymer. Membranes made of compositions comprising an ethylene/chlorotrifluoroethylene polymer having a melting temperature not exceeding 200° C. and at least one second polymer are also disclosed.05-24-2012
20120152822POLYMERIC MATRICES FORMED FROM MONOMERS COMPRISING A PROTECTED AMINE GROUP - The present disclosure relates to polymeric matrices composed of protected amine compound residues and membranes composed from such polymeric matrices. In particular, the present disclosure relates to a polymeric matrix comprising amine compound residues, acyl compound residues and protected amine compound residues.06-21-2012
20120193284Method for preparing a filtration membrane and filtration membrane prepared by said method - Method for preparing a filtration membrane and a filtration membrane prepared by the method. According to one embodiment, the method involves casting a polymer solution onto a porous support to form a coated support. The coated support is then quenched to form a membrane/support composite, and the membrane/support composite is then dried. Next, a first end of a first piece of adhesive tape is applied to the membrane side of the composite, and the second end of the first piece of adhesive tape is applied to a first rotatable winder. In addition, a first end of a second piece of adhesive tape is applied to the support side of the composite, and the second end of the second piece of adhesive tape is applied to a second rotatable winder. The two winders are then rotated so as to pull apart the membrane from the support.08-02-2012
20130015122NANOCOMPOSITE MEMBRANESAANM AWADH; TAWFIK ABDO SALEHAACI DHAHRANAACO SAAAGP AWADH; TAWFIK ABDO SALEH DHAHRAN SA - The nanocomposite membrane includes a composite of carbon nanotubes coated or chemically bonded with metal oxide nanoparticles. This composite is embedded within a polymeric matrix via interfacial polymerization on a polysulfone support. The metal oxide particles are selected to exhibit catalytic activity when filtering pollutants from water in a water treatment system, or for separating a gas from a liquid, or for selectively separating particles or ions from solution for reverse osmosis (e.g., for desalination systems), or other filtration requirements. A method of fabricating the nanocomposite membrane is also included herein.01-17-2013
20130112613HYBRID POROUS STRUCTURED MATERIAL, MEMBRANE INCLUDING THE SAME, AND METHOD OF PREPARING HYBRID POROUS STRUCTURE MATERIAL - A hybrid porous structured material may include a porous region (that forms a nanopore structure) and a non-porous region. The porous region may form a stacked structure where a plurality of spherical bodies are stacked so as to contact each other in three dimensions. The non-porous region may form a structure that fills a gap between the plurality of spherical bodies of the porous region.05-09-2013
20130153489SEMI-PERMEABLE FILM AND SEPARATION MEMBRANE INCLUDING NANOPOROUS MATERIAL, AND METHOD OF MANUFACTURING THE SAME - Example embodiments herein relate to a semi-permeable film including a nanoporous material and a polymer matrix. The nanoporous material includes a nanoporous core and a coating layer that is disposed on a surface of the nanoporous core. The coating layer may include a particle selected from a metal hydroxide particle, a metal oxide particle, and a combination thereof. A separation membrane may include the semi-permeable film. Example embodiments also relate to a method of manufacturing the semi-permeable film and the separation membrane.06-20-2013
20130180912MATERIAL AND APPLICATIONS THEREFOR - A gel film or an isolated gel film comprising sheets of graphene or chemically converted graphene at least partially separated by a dispersion medium, such as water, and arranged in a substantially planar manner to form an electrically conductive matrix.07-18-2013
20140048477HYBRID POROUS STRUCTURED MATERIAL, MEMBRANE INCLUDING THE SAME, AND METHOD OF PREPARING HYBRID POROUS STRUCTURED MATERIAL - A hybrid porous structured material may include a matrix including a plurality of first pores interconnected in three dimensions, and a porous material including second pores and filling wholly or partially each of the plurality of the first pores.02-20-2014
20140083929MICROPOROUS MODIFIED-POLYTETRAFLUOROETHYLENE MEMBRANE, POROUS-MODIFIED-POLYTETRAFLUOROETHYLENE-MEMBRANE COMPOSITE AND PRODUCTION PROCESS THEREOF, AND SEPARATION MEMBRANE ELEMENT - The invention offers a microporous modified-polytetrafluoroethylene membrane that is a microporous membrane having a significantly small pore diameter and narrow pore-diameter distribution and that can remove microscopic foreign particles at high efficiency when used as a filtration membrane. A microporous modified-polytetrafluoroethylene membrane that is a microporous membrane produced by the steps of producing a copolymer of hexafluoropropylene or perfluoroalkyl ether and tetrafluoroethylene having the number of moles not less than 50 times that of the hexafluoropropylene or perfluoroalkyl ether, forming the copolymer into the shape of a membrane, heating the membrane to the melting point of the copolymer or above to bake the copolymer, cooling the obtained baked product, and stretching the baked product and that has a mean flow pore diameter of 30 nm or less; a porous-modified-polytetrafluoroethylene-membrane composite that incorporates the microporous membrane and a production process of the composite; and a separation membrane element incorporating the porous-modified-polytetrafluoroethylene-membrane composite.03-27-2014
20140311967POROUS MATERIALS AND METHODS INCLUDING NANOPOROUS MATERIALS FOR WATER FILTRATION - Embodiments described herein relate to porous materials that may be employed in various filtration, purification, and/or separation applications. In some cases, the porous materials may be thin, flexible, and fabricated with control over average pore size and/or the spatial distribution of pores. Such porous materials may be useful in, for example, desalination.10-23-2014
20140353240HYBRID POROUS STRUCTURED MATERIAL, METHOD OF PREPARING HYBRID POROUS STRUCTURED MATERIAL, MEMBRANE INCLUDING HYBRID POROUS STRUCTURED MATERIAL, AND WATER TREATMENT DEVICE INCLUDING MEMBRANE INCLUDING HYBRID POROUS STRUCTURED MATERIAL - A hybrid porous structured material may include a porous region and a non-porous region. The porous region may include an imaginary stacked structure, wherein a plurality of imaginary spherical bodies/cavities are stacked so as to contact each other in three-dimensional directions. The non-porous region fills the gaps between the imaginary spherical bodies. A spherical colloid particle is present in each of the plurality of imaginary spherical bodies in the porous region. A separation membrane may include the hybrid porous structured material. A water treatment device may include the membrane.12-04-2014
20140374341PROCESS FOR PRODUCING SEPARATION MEMBRANE, PROCESS FOR PRODUCING SEPARATION MEMBRANE COMPOSITE, AND SEPARATION MEMBRANE COMPOSITE - There is disclosed a process for producing a separation membrane The process for producing the separation membrane includes a membrane forming step of passing a precursor solution of the separation membrane through cells of a monolith substrate to form a separation membrane precursor made of the precursor solution 12-25-2014
20150076055CARBON MEMBRANE, METHOD FOR MANUFACTURING CARBON MEMBRANE, AND CARBON MEMBRANE FILTER - There is disclosed a method for manufacturing a carbon membrane in which a phenolic hydroxyl group is 10,000 ppm or less and whose separating function does not easily deteriorate even after exposure to acidic conditions. The method for manufacturing the carbon membrane has a drying step of drying a resin solution membrane including a phenol resin formed on a substrate; and a carbon membrane preparing step of heating the dried resin solution membrane at 600 to 900° C. in a vacuum or at 650 to 900° C. in a nitrogen atmosphere to carbonize the membrane, thereby obtaining the carbon membrane in which the concentration of the phenolic hydroxyl group is 10,000 ppm or less.03-19-2015
20150122727MITIGATING LEAKS IN MEMBRANES - Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.05-07-2015
20150306550GRAPHENE MEMBRANE AND METHOD FOR MANUFACTURING THE SAME - Disclosed are a graphene membrane and a method for manufacturing the same. The graphene membrane includes a graphene layer having a porous pattern including a plurality of pores having a size of 5 to 100 nm and a supporter configured to support the graphene layer and including a plurality of pores having a greater size than the pores of the graphene layer.10-29-2015
20150321148SEPARATION MEMBRANE AND SEPARATION MEMBRANE ELEMENT - A separation membrane including: a separation membrane main body having a feed-side face and a permeate-side face; and a plurality of channel members adhered to the permeate-side face of the separation membrane main body, in which a weight W (g) of the plurality of channel members and a volume V (cm11-12-2015
20150353698METHOD FOR PRODUCING A PLASTIC ARTICLE WITH A HYDROPHOBIC GRAFT COATING AND PLASTIC ARTICLE - A method for producing a plastic article comprising the steps of: 12-10-2015
20150375176MEMBRANE FILTER - A membrane filter including a thin film having a nanometer order thickness as a base, which is easy to increase in size, and which has sufficient strength. The membrane filter is formed by laminating a thin film having a thickness of 1 to 1,000 nm with a support film which is a porous film having a thickness of 1 to 1,000 μm, which is made of a photosensitive composition or a cured product of the photosensitive composition, and has a plurality of hole portions penetrating in the thickness direction.12-31-2015
20160129402VIRUS HYBRID SEPARATION FILM AND METHOD FOR MANUFACTURING SAME - The present invention provides a virus hybrid separation film and a method for manufacturing the same, capable of improving selective permeability using nano-pores of a virus. The separation film according to the present invention comprises: a porous support layer; and an active layer, disposed on the porous support layer, for having a target material selectively permeate thereinto, wherein the active layer comprises: a plurality of virus assemblies having pores; and an impermeable supporter. The impermeable supporter is positioned between the plurality of virus assemblies and supports the virus assemblies.05-12-2016
20160375405MONOLITHIC SEPARATION MEMBRANE STRUCTURE, AND METHOD FOR PRODUCING MONOLITHIC SEPARATION MEMBRANE STRUCTURE - A monolithic separation membrane structure comprises a porous monolithic substrate and a separation membrane. The monolithic substrate includes a first end surface, a second end surface and a plurality of through-holes respectively passing from the first end surface to the second end surface. The separation membrane is formed on an inner surface of the respective plurality of through-holes. The surface roughness Ra of the separation membrane is no more than 1 micrometer and the thickness of the separation membrane is no more than 5 micrometers.12-29-2016

Patent applications in class Semipermeable membrane

Patent applications in all subclasses Semipermeable membrane

Website © 2025 Advameg, Inc.