Class / Patent application number | Description | Number of patent applications / Date published |
210710000 | Treating the insoluble substance | 50 |
20080230484 | PROCESS FOR TREATING SLUDGE AND MANUFACTURING BIOORGANICALLY-AUGMENTED HIGH NITROGEN-CONTAINING INORGANIC FERTILIZER - The invention describes a new method for treating sludge, which can result in the production of high nitrogen organically-augmented inorganic fertilizer that incorporates municipal sludges or biosolids or organic sludges that can compete with traditional fertilizers such as ammonium phosphate, ammonium sulfate and urea on the commodity fertilizer marketplace. The method takes advantage of the thixotropic property of dewatered biosolids or organic sludge to create a pumpable paste-like material from the biosolids or organic sludge that is then treated with an oxidizer to reduce odorant effects and an acid. This mix is then interacted with concentrated sulfuric and or phosphoric acids and an ammonia source or alternatively a hot or molten melt or salt of ammonium sulfate/phosphate to form a fertilizer mix. The present invention controls the heat, atmospheric pressure and retention time of the fertilizer mix in the reaction vessel. When a fertilizer melt is formed ammoniation is subsequently completed by the specific use of vaporized ammonia. The invention can also be an add-on to commercial production of ammonium salts. The fertilizer produced by the present invention contains more than 8 wt. % nitrogen and preferably 15 wt. % nitrogen. The invention is oriented to be tailored to the biosolids production for individual municipal waste treatment plants in order to keep the fertilizer manufacturing plants of the present invention small with a minimization of logistics and liability. | 09-25-2008 |
20080264872 | Method of and Apparatus for Treating Chlorine-Containing Waste - The present invention provides a method and an apparatus for treating a chlorine-containing waste, which can separate and recover a chlorine component from a chlorine-containing waste, and also can achieve a high chlorine removal thereby obtaining a high purity chlorine compound, and can decrease the amount of water for recovering chlorine. The method for treating a chlorine-containing waste of the present invention comprises a washing/filtrating step of adding water to the chlorine-containing waste, followed by mixing to form a first slurry, separating the first slurry into a solid and a filtrate through filtration, and using the resulting solid as a cement raw material; a filtrate treating step of adding a reducing agent and a pH adjustor to the filtrate to form a sediment containing heavy metal and calcium contained in the filtrate, and separating the sediment through filtration; a crystallization step of concentrating the filtrate, from which the sediment has been removed, through heating and evaporation to form a second slurry in which a chlorine compound contained in the filtrate has been crystallized, separating the second slurry into a solid containing a chlorine compound and a mother liquor, and recovering the solid; and a separated mother liquor treating step of returning a portion of the mother liquor to a cement manufacturing facility. | 10-30-2008 |
20090020481 | Method and system for treating feedwater - A system for treating feedwater includes a fluidized bed heat exchanger unit connected to receive feedwater and a flash concentrator column connected to receive feedwater discharged from the fluidized bed heat exchanger unit. A spray dryer is provided to receive a solids/liquid slurry discharged from the flash concentrator column. Feedwater can be treated by converting dissolved solids in the feedwater to suspended solids, vaporizing a portion of the feedwater to produce a solids/liquid slurry, and separating solids from the solids/liquid slurry. | 01-22-2009 |
20090107920 | SLUDGE TREATMENT SYSTEM - When liquefying sludge, e.g as in U.S. Pat. No. 6,808,636, the combination of temperature, pH, and shearing, is synergistic. Described here is a system that provides for collating test sampling and full-scale data inputs, recording achieved results and the engineering parameters that achieved those particular results. The data is presented in e.g a table format, which assists design engineers to zero-in on the combinations of parameters that will likely give the desired results. | 04-30-2009 |
20090218294 | Methods for Recovering Organic-Inorganic Element-Doped Metal Oxides from Hydrolysable Metal Compounds Associated with Contaminated Water Treatment - The present invention relates to a method for recovering an organic-inorganic element-doped metal oxide from a hydrolysable metal compound, accompanied with contaminated water treatment. The present invention comprises steps of: a) adding a hydrolysable metal compound as a coagulant to a contaminated water to form a separable floc between the hydrolysable metal compound and contaminants present in contaminated water; b) separating the separable floc and the pre-treated water after flocculation treatment; and c) calcinating the separated floc over 500° C. to produce an organic-inorganic element-doped metal oxide. More preferably, the present invention further comprises subjecting the pre-treated water of the step b) to a microwave treatment to cause a photocatalytic degradation of an organic contaminant that remains in the pre-treated water, with the assistance of the remaining hydrolysable metal compound. A novel titanium compound is found as an alternative coagulant instead of iron and aluminum salts which most widely use in water treatment. Ability, capacity and efficiency of flocculation as the proposed titanium coagulant are similar to those of FeCl | 09-03-2009 |
20100038319 | PROCESS FOR SEPARATING OFF CARBON BLACK FROM A WASTEWATER STREAM - A process for cleaning a wastewater stream which comprises soot and is obtained in the preparation of acetylene, the soot being present in finely divided form in the wastewater, wherein the soot is removed by subjecting the wastewater to a solid concentration by sedimentation and then the soot sludge obtained in the sedimentation is dewatered further by a pressure filtration. | 02-18-2010 |
20100089835 | METHOD AND EQUIPMENT FOR PROCESSING FATTY WASTE - The invention relates particularly to an equipment for processing fatty waste ( | 04-15-2010 |
20100096336 | Waste treatment system - A system for removing water from sludge is disclosed. The system ( | 04-22-2010 |
20100116753 | DEWATERING SYSTEM - A system for processing drilling mud, the system including a primary separation tank having an inlet for receiving drilling waste and an outlet in fluid communication with a feed line, and an injection pump in fluid communication with a polymer tank and the feed line. The system also includes a clarifying tank in fluid communication with the feed line and a first collection tank, wherein effluent from the clarifying tank is discharged into the first collection tank, and a centrifuge in fluid communication with the clarifying tank and a second collection tank, wherein effluent from the centrifuge is discharged into the second collection tank. | 05-13-2010 |
20100140180 | METHOD AND APPARATUS FOR TREATMENT OF CONTAMINATED LIQUID - Methods and apparatuses for treatment of contaminated liquid are provided including an integrated ultra-filtration and clarification apparatus, and an optional integrated electrocoagulation capability. The integrated apparatus comprises an outer tank, an inner casing, and a plurality of ultra-filtration filters contained within the inner casing. Clarification of liquid occurs in the gap between the casing and tank. Solid matter settles, and aggregates in the bottom portion of the tank. The accumulated solid material acts as a secondary filter by pre-filtering the liquid prior to contact with the ultra-filtration filters. Clarified liquid is retained in a chamber of the casing, and the clarified liquid is drawn through the ultra-filtration filters as initiated by a source of vacuum communicating with the ultra-filtration filters. The integrated apparatus can be incorporated within any desired liquid treatment facility, and one combination in accordance with this system of the present invention includes an upstream electrocoagulation unit and a downstream reverse osmosis unit. The electrocoagulation function may be incorporated in the tank by a plurality of reaction plates or blades mounted to the interior sidewall of the tank. Additionally, the integrated apparatuses may include bacterial treatment in which a selected group of micro-organisms are introduced into the apparatus for treatment of particular contaminates. Solids recovered from the integrated apparatus include a certain percentage of water that are removed from the solids in a downstream filter press and clarifier. The removed water can be returned back to the upstream electrocoagulation device to minimize wastewater which otherwise would need to be removed in settling ponds. One embodiment of the system may include dual integrated ultra-filtration and clarifier apparatuses and corresponding electrocoagulation units. | 06-10-2010 |
20100170854 | Sludge Dewatering and Drying - Methods, apparatus and systems for dewatering and drying the dewatered sludge. Sludge pumped into the sludge dewatering apparatus is mixed in-line with a pre-measured quantity of polymers to agglomerate solids entrained in the sludge. The agglomerated sludge is routed to a filtration station comprising filtration chambers. The filtration chambers are fitted with industry standard filter bag. The agglomerated sludge is subjected to dewatering in the filter bags and the dewatered sludge is subsequently compacted, dried and discarded. | 07-08-2010 |
20110024358 | APPARATUS AND PROCESSES FOR REMOVING BORON FROM LIQUIDS - A process removes boron from ion exchange system regeneration solution including introducing a borate precipitator into the regeneration solution in a precipitation zone to generate borate precipitate; introducing a coagulator into the regeneration solution that coagulates solids and/or borate precipitate generated by the borate precipitator and absorbs boron into the solids; introducing the regeneration solution, solids and borate precipitate into a separation zone; introducing anionic polymer into the regeneration solution adjacent to or in the separation zone to increase the propensity of borate precipitate and solids to separate from the regeneration solution; and filtering the regeneration solution to remove residual suspended solids from the regeneration solution. Another process removes boron from ion exchange system regeneration solution including introducing a caustic material into the regeneration solution; heating the regeneration solution to a selected temperature; introducing heated regeneration solution into an evaporation zone to remove at least a substantial portion of water from the regeneration solution and thereby form a slurry comprising boron salt(s); and introducing the slurry into a crystallizer zone to remove residual water. | 02-03-2011 |
20110100924 | Compact Wastewater Concentrator and Contaminant Scrubber - A compact and portable liquid concentrator and contaminant scrubber includes a gas inlet, a gas exit and a flow corridor connecting the gas inlet and the gas exit, wherein the flow corridor includes a narrowed portion that accelerates the gas through the flow corridor. A liquid inlet injects liquid into the gas stream at a point prior to the narrowed portion so that the gas-liquid mixture is thoroughly mixed within the flow corridor, causing a portion of the liquid to be evaporated. A demister or fluid scrubber downstream of the narrowed portion removes entrained liquid droplets from the gas stream and re-circulates the removed liquid to the liquid inlet through a re-circulating circuit. A reagent may be mixed with the liquid to react with contaminants in the liquid. | 05-05-2011 |
20110203998 | METHOD FOR REMOVING AMMONIA NITROGEN IN COKING WASTEWATER - A new method for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: introducing coking wastewater into a reaction pool into which magnesium and phosphate are added; adding sodium hydroxide to regulate the PH of the mixture around 9.0-10.5; separating the supernatant and the precipitate after proper agitation and natural precipitation; dehydrating the precipitate and then adding alkaline fly ash, water to the dehydrated precipitate and stirring the mixture; decomposing the mixture with heating and absorbing the ammonia gas thereof produced with acidic solution. In consideration of high concentration of ammonia nitrogen in coking wastewater, this invention aims at quick and efficient treatment. The concentration of ammonia nitrogen in treated water meets the highest discharge standard stipulated in [China National] | 08-25-2011 |
20110203999 | DEWATERING OF DRILLING MUD USING A FILTER PRESS - A method of separating a mixture of liquid and insoluble solids in a filter press may comprise: diluting the mixture; adding a flocculating agent to the diluted mixture and stirring to form a chemically processed mixture; pumping the chemically processed mixture into a chamber between two filter plates in the filter press to form a filter cake, wherein the chamber is lined by filter cloths, and wherein, during the pumping, filtrate is forced through the filter cloths and out of the chamber; heating the filter cake in the chamber, wherein, during the heating, filtrate is forced through the filter cloths and out of the chamber; and releasing dried filter cake from the chamber. During the heating, the chamber may be vacuum pumped to facilitate removal of water vapor. Furthermore, before the diluting, additional solids may be added to the mixture. The method may be used to dewater drilling mud, and mixtures of drilling mud with drill cuttings. A system for dewatering a mixture of drilling mud and drill cuttings may comprise: a mixing vessel for mixing together the drilling mud and drill cuttings to form the mixture; a filter press for dewatering the chemically processed mixture; a pump for pumping the mixture from the mixing vessel into the filter press; and a heater for heating the mixture in the filter press. | 08-25-2011 |
20110309029 | METHOD FOR REMOVING ARSENIC AS SCORODITE - The invention relates to a method for removing arsenic as scorodite from solutions that contain iron and arsenic. In accordance with the method, arsenic is first precipitated as ferric arsenate and subsequently processed hydrothermally into crystalline scorodite. | 12-22-2011 |
20120024797 | Methods for dewatering wet algal cell cultures - A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals. | 02-02-2012 |
20120125860 | WASTE SLUDGE DEWATERING - Technologies are generally described for processes, compositions and systems for waste sludge dewatering. In an example, the process may include receiving a waste sludge including a water component and an initial content of suspended particulates. The process may include treating the waste sludge with a combination of flocculant produced by | 05-24-2012 |
20120132594 | AQUEOUS SOLVENTS FOR HYDROCARBONS AND OTHER HYDROPHOBIC COMPOUNDS - A method of solubilising in an aqueous medium a hydrocarbon or a hydrophobic compound having a hydrocarbon skeleton that carries one or more heteroatom-containing functional groups, e.g. hydroxyl, carboxylic acid or aldehyde (CHO) groups. The method comprises contacting the hydrocarbon or the hydrophobic compound with the aqueous medium that includes at least one non-ionic surfactant containing a hydrophilic part and a hydrophobic part, the hydrophilic part comprising a polyhydroxylated moiety and the hydrophobic part comprising a hydrocarbon chain containing at least 12 carbon atoms, e.g. ethoxylated sorbitol. The amount of surfactant used is sufficient to form micelles including a core formed of the hydrocarbon or the hydrophobic compound. | 05-31-2012 |
20120145644 | CONCENTRATION OF SUSPENSIONS - The present invention relates to a process of concentrating an aqueous suspension of solid particles comprising the steps of adding at least one organic polymeric flocculant to the suspension thereby forming flocculated solids in which the flocculated solids are allowed form a layer of solids and thereby forming a more concentrated suspension in which the process comprises the addition of an effective amount of an agent that is selected from the group consisting of free radical agents, oxidising agents, enzymes and radiation, in which the agent is applied to the suspension prior to or substantially simultaneously with adding the organic polymeric flocculant and/or the organic polymeric flocculant is added to the suspension in a vessel and the agent is applied to the suspension in the same vessel. The process is particularly suitable for solids liquid separation in which the flocculated solids are allowed to settle by sedimentation in a gravity thickener. | 06-14-2012 |
20120223021 | SYSTEM AND METHOD FOR TREATING WASTE - A system and method for removing water from sludge including mixing a blending material into the sludge and compressing the mixture. Additional pre and post compression steps are disclosed. Examples of specific blending materials and methods for their use are disclosed. | 09-06-2012 |
20120248042 | OIL SANDS TAILINGS MANAGEMENT - A system and method for managing fluid mature fine tailings (MFT) containment volume in a tailings pond to a minimum, fixed steady-state volume by balancing the accumulation of the MFT in the pond with consumption of the MFT from the pond by one or both of spiking the MFT into coarse sand tailings forming a coarse sand beach with trapped fines which is segregating for forming a trafficable deposit or centrifuging MFT from the tailings pond and depositing the resulting centrifuge cake on the coarse sand beach. During the life of the oil sand operation, when the volume of MFT approaches the fixed volume of the tailings pond, MFT is consumed from the pond using both sand-spiking and centrifugation as required. Production of MFT in the pond is also reduced by diverting an underflow from a secondary flotation cell in an extraction plant from the tailings pond to a thickener where the fines-rich thickened tailings from the thickener are beached for subsequent dewatering and reclamation. | 10-04-2012 |
20130015141 | NOVEL INJECTION FLOCCULATION AND COMPRESSION DEWATERING UNIT FOR SOLIDS CONTROL AND MANAGEMENT OF DRILLING FLUIDS AND METHODS RELATING THERETOAANM Landis; Charles R.AACI The WoodlandsAAST TXAACO USAAGP Landis; Charles R. The Woodlands TX USAANM Collins; Ryan P.AACI SpringAAST TXAACO USAAGP Collins; Ryan P. Spring TX USAANM Anderson; Edward A.AACI SpringAAST TXAACO USAAGP Anderson; Edward A. Spring TX USAANM Woods; Roger H.AACI WatfordAACO CAAAGP Woods; Roger H. Watford CAAANM Pullman; Douglas G.AACI WatfordAACO CAAAGP Pullman; Douglas G. Watford CAAANM Donald; David M.AACI HoustonAAST TXAACO USAAGP Donald; David M. Houston TX US - A method may include providing a returned fluid comprising a fluid; and a solid contaminant; introducing the returned fluid into a solid-liquid sorter thereby separating the returned fluid into an overflow and underflow; flocculating the underflow in a flocculating chamber thereby forming a flocculated fluid; and dewatering the flocculated fluid using a dewatering rack. | 01-17-2013 |
20130075340 | OIL SANDS FINE TAILINGS FLOCCULATION USING DYNAMIC MIXING - A process for flocculating and dewatering oil sands fine tailings is provided, comprising: adding the oil sands fine tailings as an aqueous slurry to a stirred tank reactor; adding an effective amount of a polymeric flocculant to the stirred tank reactor containing the oil sands fine tailings and operating the reactor at an impeller tip speed for a period of time that is sufficient to form a gel-like structure; subjecting the gel-like structure to shear conditions in the stirred tank reactor for a period of time sufficient to break down the gel-like structure to form flocs and release water; and removing the flocculated oil sands fine tailings from the stirred tank reactor when the maximum yield stress of the flocculated oil sands fine tailings begins to decline but before the capillary suction time of the flocculated oil sands fine tailings begins to substantially increase from its lowest point. | 03-28-2013 |
20130175223 | Remediation of Slurry Ponds - System and methods for remediating a slurry pond are disclosed herein. A method includes distributing a material over a surface of the slurry pond, wherein the slurry pond includes residues from a plant operation. A method also includes placing a load on the material, wherein the load causes the material to sink below a level of a supernatant but to remain above a layer of sludge in the slurry pond. | 07-11-2013 |
20130228525 | TEMPERATURE SWITCHABLE POLYMERS FOR FINE COAL DEWATERING - A flocculating agent that comprises a complex of a metal salt and multiple strands of a temperature sensitive polymer. A process for separating coal fines from an aqueous liquid using a flocculent having a critical flocculation temperature, said critical flocculation temperature being the temperature below which flocculent is hydrophilic and forms floccules with fines and above which the flocculent is hydrophobic, which comprises adding to the aqueous liquid an effective amount of the flocculent at a temperature below the critical flocculent flocculation temperature of the flocculent to cause generation of floccules, said comprising at least a metal complex including a metal salt and a water soluble polymer, separating (for example filtering) floccules from the aqueous liquid, then heating the floccules to a temperature above the critical flocculation temperature of the flocculent to expel water from the floccules to create a solids and expelled water, and separating the expelled water from the solids. | 09-05-2013 |
20130334143 | APPARATUS AND METHOD FOR PHOSPHOROUS REMOVAL FROM WASTE WATER USING DOLOMITE - The present disclosure provides apparatus and method for phosphorous removal using dolomite by mixing an inorganic coagulant and dolomite together to improve the phosphorous removal efficiency and controlling pH, which has been lowered due to the use of the inorganic coagulant, close to the neutral by means of dolomite to improve the economic feasibility and minimize an additional neutralizing process. | 12-19-2013 |
20140054231 | CENTRIFUGE PROCESS FOR DEWATERING OIL SANDS TAILINGS - A process for dewatering oil sands tailings is provided, comprising providing a tailings feed having a solids content in the range of about 10 wt % to about 45 wt %; adding a flocculant to the tailings feed and mixing the tailings feed and flocculant to form flocs; and centrifuging the flocculated tailings feed to produce a centrate having a solids content of less than about 3 wt % and a cake having a solids content of at least about 50 wt %. | 02-27-2014 |
20140054232 | PROCESS AND SYSTEM FOR DEWATERING OIL SANDS FINE TAILINGS - A dewatering process comprises dispersing an anionic polymer flocculant in a slurry comprising water and oil sands fine tailings to form flocs comprising fines bridged by the anionic polymer flocculant. A cationic polymer flocculant is subsequently dispersed in the flocculated slurry to further flocculate the flocs and form floc aggregates. The floc aggregates comprise flocs bridged by the cationic polymer flocculant. The floc aggregates are then compressed to remove water and form a dewatered compact. A system is also provided for the dewatering processes using inline mixtures and a filter press. | 02-27-2014 |
20140116955 | DISPOSAL OF OIL SAND TAILINGS CENTRIFUGE CAKE - A process for the disposal of oil sands tailings is provided, comprising: optionally diluting the tailings with sufficient water to yield a tailings feed having a solids content in the range of about 18 wt % to about 36 wt %; adding one or both of a coagulant and a flocculant to the tailings feed to form a centrifuge feed; centrifuging the centrifuge feed to produce a centrifuge cake having a solids content of at least about 50% and a centrate having a solids content of less than about 3 wt %; and introducing the centrifuge cake into an overburden containment structure comprised of oil sand overburden, said overburden containment structure comprising a least one trench for holding the centrifuge cake, or into a deep disposal site for additional dewatering of the centrifuge cake through self-weight consolidation and creep. | 05-01-2014 |
20140116956 | CO-PROCESSING OF FLUID FINE TAILINGS AND FRESH OIL SANDS TAILINGS - A process is provided for dewatering fluid fine tailings, comprising combining fluid fine tailings with fresh oil sands tailings to create a tailings mixture having a sand to fines ratio of about 1.0 to about 2.0; optionally diluting the tailings mixture with water to an optimal density; adding an aqueous polymeric flocculant to the tailings mixture and mixing the polymeric flocculant and tailings mixture to form a flocculated material; and transferring the flocculated material to a deposition cell for dewatering. | 05-01-2014 |
20140197110 | PROCESS AND PLANT FOR DECONTAMINATING PHOSPHORIC ACID SOLUTION - The invention relates to a method for recycling of phosphoric acid solution from a decontamination bath, which solution is contaminated with radioactive components, wherein the used phosphoric acid solution is diluted with aqueous oxalic acid solution, in order to separate off iron oxalate in this connection, and the phosphoric acid solution is used for decontamination of further system parts, wherein the iron ion content in the phosphoric acid in the decontamination bath is continuously measured, and phosphoric acid is continuously withdrawn from the decontamination bath and concentrated and purified phosphoric acid is replaced, so that a specific concentration of dissolved iron in the contamination bath is not exceeded, and to a system for implementation of the method. The solution has the advantage that only small amounts of phosphoric acid are in circulation in a system for recycling of a phosphoric acid solution from a decontamination bath, whereby the required work volume in the system tanks is significantly reduced. Resulting from this, it is possible to undertake purging of iron ions stemming from electrochemical decontamination, from phosphoric acid solution, using mobile systems. | 07-17-2014 |
20140197111 | Methods and systems for wastewater treatment and resource recovery - Wastewater treatment methods and systems for removal of phosphorus (P) and nitrogen (N) from wastewater and for recovery of them as usable materials. Sufficient amount of dolomite lime and slaked dolomite lime is added into the wastewater to increase the pH of the wastewater to above 8.5 and to form P precipitates and to convert ammonium to ammonia in a precipitation-ammonia stripping reactor or a continuous flow precipitation reactor. The P precipitates are separated from the wastewater and recovered as usable solid material. The ammonia gas is absorbed and concentrated with acid solution in an ammonia absorption tower as usable liquid material. | 07-17-2014 |
20140231359 | TREATMENT OF PHOSPHATE-CONTAINING WASTEWATER WITH FLUOROSILICATE AND PHOSPHATE RECOVERY - A method for treating phosphate-containing wastewater, such as phosphogypsum pond water. The method includes the steps of: (a) adding a first cation to the wastewater to precipitate fluorosilicate from the wastewater; (b) adding a second cation to the wastewater to precipitate fluoride from the wastewater; (c) raising the pH of the wastewater to precipitate the second cation from the wastewater; (d) removing residual silica from the wastewater; and (e) precipitating phosphate from the wastewater. The precipitated fluorosilicate may be sodium fluorosilicate. The precipitated phosphate may be struvite. | 08-21-2014 |
20140311989 | METHOD FOR SOLIDIFYING FLOATING OIL IN FOOD WASTE WATER - The invention relates to a method for solidifying a floating fat and oil in a food waste water, the method being capable of solidifying floating oil by uniformly mixing and aging the floating oil having a high content of water generated during the process of treating high concentration waste water generated during a food waste treatment process or generated from a food company, slaughterhouse and the like | 10-23-2014 |
20140319066 | Thin Stillage Clarification - Systems and methods for improving the quality of solids and liquids recovered at atmospheric pressure and temperature from a stillage stream generated as a by-product of an ethanol production process, the recovered solids having higher bio-available amino and fatty acids than evaporation-produced condensed solubles, the recovered liquids having less total solids and total suspended solids than evaporation-produced condensate. A static mixer includes an input for receiving the stillage stream combined with a GRAS anionic polymer, a cylindrical mixing chamber that controllably mixes the stillage stream and the polymer to generate wet flocculated solids and liquid co-product, and a discharge chute that outputs the wet flocculated solids and liquid co-products onto a moving, gravity filter belt having a membrane surface that separates the output from the static mixer into recovered liquids in the form of clarified, thin stillage and recovered solids in the form of dry flocculated solids. | 10-30-2014 |
20150027957 | Collection Tubes Apparatus, Systems, and Methods - Methods of producing collection tubes are presented. The methods include providing a separator substance that can rapidly polymerize in a short time to a desired hardness and disposing the separator substance within the lumen of the tube. The separator substance is formulated to have a density between an average density of a serum fraction of whole blood and a cell-containing fraction of whole blood, and to be flowable with whole blood. Upon centrifugation of a tube having blood, the separator substance forms a barrier between the whole blood fractions. The tube and barrier maintain stability of one or more analyte levels, including potassium and glucose, within 10% of their initial values before centrifugation for at least four days. | 01-29-2015 |
20150060368 | TREATMENT OF GAS WELL PRODUCTION WASTEWATERS - A method of treating a wastewater is provided and can be used, for example, to treat a gas well production wastewater to form a wastewater brine. The method can involve crystallizing sodium chloride by evaporation of the wastewater brine with concurrent production of a liquor comprising calcium chloride solution. Bromine and lithium can also be recovered from the liquor in accordance with the teachings of the present invention. Various metal sulfates, such as barium sulfate and strontium sulfate, can be removed from the wastewater in the production of the wastewater brine. Sources of wastewater can include gas well production wastewater and hydrofracture flowback wastewater. | 03-05-2015 |
20160023934 | PORTABLE, NON-BIOLOGICAL, CYCLIC SEWAGE TREATMENT PLANT - A mobile sewage treatment and water reclamation system for rapid deployment to augment existing wastewater systems and provide interim service in lieu of permanent facilities, includes: (a) denaturing stage wherein raw sewage is first ground into suspendable grit, its pH first lowered to kill acid-sensitive bio-organisms, then raised to kill base-sensitive bio-organisms, and then neutralized; (b) clarifying stage employing an inverted-cone tank to circulate the solution after injection with chemicals to flocculate small particles for collection in a layer for siphoning off; and (c) disposal stage wherein clarified water passes through media filters to remove remaining solids and odors, the effluent water being clean enough for irrigation, aquatic life and discharge into waterways; and wherein sterile sludge is pressed into semi-dry solids, then dried, crushed, powdered and bagged for use as high-nitrate biomass fertilizer or for fossil-fuel power co-generation applications. | 01-28-2016 |
20160082367 | CONCENTRATION OF SUSPENSIONS - A process of concentrating an aqueous suspension of solid particles, comprising the steps of introducing the aqueous suspension of solid particles into a vessel, addition of at least one organic polymeric flocculant to the aqueous suspension of solid particles thereby forming flocculated solids, allowing the flocculated solids to settle to form a compression zone, comprising a bed of sedimented solids in suspension at the lower end of the vessel, flowing the sedimented solids from the vessel as an underflow stream, in which an effective amount of ultrasonic energy is applied to: a) the bed of solids at the compression zone; b) the sedimented solids in the underflow stream; or c) a recycle stream containing sedimented solids taken from either the underflow stream or the compression zone which are then recycled back to the vessel. | 03-24-2016 |
20160159669 | REMOVAL OF METALS FROM WASTEWATER - A method for effecting a comprehensive removal of heavy metals from wastewater in a two stage process in which the wastewater is contacted in a first stage with a source of ferric ions under mildly acidic conditions (pH 5 to pH 8), preferably followed by the removal of the precipitated solids using a solid-liquid separation; a second stage follows in which the wastewater from the first step is contacted with a source of ferric ions under alkaline conditions (pH 8+) followed by the removal of the precipitated solids using a second solid-liquid separation. Used in conjunction with an initial oxidation step, the present method makes possible the removal of a whole suite of heavy metals present in both the anionic and cationic form in refinery wastewater. The treatment also removes metal compounds in the particulate phase. Metals concentrations can be significantly decreased from the mid to high ppb (parts per billion) range down to the low ppb range to meet the quality criteria for discharge. | 06-09-2016 |
20160160367 | SYSTEM AND METHOD FOR PURIFYING DEPLETED BRINE - A system and method for removing impurities to reconstitute a NaCl stream to a saturated solution salt solution and remove any impurities such as sodium bisulfate (NaHSO | 06-09-2016 |
210711000 | For recovery of a treating agent | 8 |
20100065505 | Apparatus and Method for Removal of Ammonia from a Medium - The invention concerns a method and an apparatus for removal of ammonium from a polluted media, which avoid the disadvantages related to the chemical-physical properties of MAP, with the aim to improve the technical and economical operational parameters and to produce a reusable and environmental friendly produced nitrogen fertiliser. The invention concerns a method and a apparatus where all chemical processes and mechanical steps are carried out in one single container with the different steps split in time phases, whereby the chemical products are prevented from transportation between compartments and contact with pumps and pipes. Only liquids without precipitates are in contact with these elements. The apparatus includes a process container, an elevator unit and a flexible membrane which together enables all chemical processes, separation, mixing and gas extraction to be carried out in the same compartment. The application is mainly for ammonium containing water from Leachate, reject water, food industry and agriculture. | 03-18-2010 |
20110000856 | Method for Treatment of Water Comprising Non-Polar Compounds - A process for removal of non-polar compounds from water, wherein the non-polar compounds exist in dissolved or dispersed form, wherein the water is led through a preparation tank wherein the temperature is adjusted and wherein possible solid particles are removed. The water is then led via pipe into a reactor tank and is mixed with a hydrate forming compound, wherein simultaneously hydrate seeds are added which have been recycled for continuous use in the process; whereby the drops or molecules of the non-polar compounds are attached or associated to hydrate particles being formed in the reactor tank. The hydrate particles are separated from the water and melted. The hydrate forming compound is recycled to the reactor tank and the non-polar compounds discharged. In addition, a device for use of the process as well as hydrates for removal of non-polar compounds in water. | 01-06-2011 |
20110084029 | Waste treatment system - A system and method for removing water from sludge is disclosed. The method ( | 04-14-2011 |
20110278232 | HEAVY METAL REMOVAL FROM WASTE STREAMS - A method for removing heavy metals from contaminated water, comprising collecting metal salt precipitates from a water softening process, drying said precipitates, contacting water having a concentration of one or more heavy metals with said precipitates, and collecting water having a reduced concentration of said heavy metal(s). | 11-17-2011 |
20120261351 | SYSTEM AND METHOD FOR TREATING WASTE - A system and method for removing water from sludge including mixing a blending material into the sludge and compressing the mixture. Additional pre and post compression steps are disclosed. Examples of specific blending materials and methods for their use are disclosed. | 10-18-2012 |
20130319950 | SELECTIVE OXOANION SEPARATION USING A TRIPODAL LIGAND - The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes. | 12-05-2013 |
20140158632 | SELECTIVE SEPARATION OF A SALT FROM WATER - Described herein are methods of separating a first soluble salt from water that contains the first soluble salt and a second soluble salt, by (a) adding a composition to a water product containing a first soluble salt and a second soluble salt, the composition comprising seed crystals composed substantially of a target insoluble salt to be formed from the first soluble salt; and (b) collecting the target insoluble salt. These methods may be used, for example, to separate strontium from water that includes at least one soluble strontium salt and a second soluble salt (such as one soluble calcium salt). | 06-12-2014 |
20150068982 | WATER TREATMENT PROCESS AND WATER TREATMENT SYSTEM - A water treatment method and a water treatment system that are capable of treating water containing salts to allow recovery of treated water at a high ion removal rate and a high water recovery rate, and allow recovery of high quality gypsum are provided. In the water treatment system, the water to be treated containing Ca | 03-12-2015 |