Class / Patent application number | Description | Number of patent applications / Date published |
210659000 | Including liquid flow diversion | 26 |
20080203029 | Chromatographic Media - This invention concerns the preparation and use of novel polymeric chromatographic media and preferably mixed mode polymeric chromatographic media. In accordance with the present invention, polymeric media is prepared using polymeric particles derivatized with polyethyleneimine, and preferably such polyethyleneimine derivatized polymeric particles further functionalized with appropriate reactants. The polymeric chromatographic media is especially useful for bioseparations. | 08-28-2008 |
20080230480 | Method for Extracting Lactic Acid From Aqueous Suspensions - The invention relates to a method for the continuous extraction of lactic acid from an aqueous suspension containing solids. According to said method, the aqueous suspension containing solids is brought into contact, in a counter-current, with an organic solvent that is partially miscible with water, in a column provided with filling agents which have a surface consisting of hydrophobic material, in such a way as to form an aqueous phase and an organic phase, such that the organic phase is guided as a dispersed phase in a section of the column comprising filling agents. | 09-25-2008 |
20080237132 | Process and device for simulated moving bed separation with a reduced number of valves and lines - The invention concerns a simulated moving bed adsorption separation device comprising a limited number of valves. According to the invention, the device comprises a column with a plurality of sectors Sk with 2 superimposed plates Pi with a single distribution network, each sector Sk comprising an external principal bypass line Lk connected to each plate Pi of Sk via a plate valve V | 10-02-2008 |
20090050568 | Time delay for sample collection in chromatography systems - A system and process for chromatography that uses a chromatography column to separate components from a sample received into the column in a mobile phase flowstream and places a second chromatography column between a detector and a collection system that compensates the timing of fraction collection for a delay caused by processing the collection signals generated by the detector. The device and process of the preferred and alternative embodiments add a delay into the flowstream of a chromatographic system, such as LC, HPLC, and SFC. Sample fractions are collected from sample component concentration peaks based upon the chromatographic elution of the sample components. | 02-26-2009 |
20090101582 | Recycled Suppressor Regenerants - A suppressed ion chromatographic apparatus using a regenerant recycle loop, comprising (a) an ion separation device, (b) a membrane suppressor, (c) a detector, (d) a container for regenerant solution, (e) a first conduit between the ion separation device and the suppressor, (f) a second conduit between the regenerant solution container and the suppressor, (g) a third conduit between the suppressor and the regenerant solution container, and (h) a regenerant solution recycle loop out of fluid communication with the detector outlet. | 04-23-2009 |
20090127200 | Barrier with a seated ion exchange bead and method - Ion transport apparatus (e.g. an electrolytic eluent generator or a suppressor for ion chromatography) in which ions in a first chamber are transported to a liquid in second chamber through a wall comprising an ion exchange bead sealed in a bead seat. The wall is capable of transport ions but of substantially blocking bulk liquid flow. | 05-21-2009 |
20090194482 | SEMI-CONTINUOUS CHROMATOGRAPHIC METHOD AND CORRESPONDING DEVICE FOR THE SEPARATION OF BINARY AND MULTI-COMPONENT MIXTURES - The invention relates to a semi-continuous chromatographic method for the separation of binary and multi-component mixtures and corresponding devices. | 08-06-2009 |
20090194483 | MICROFLUIDIC DEVICE HAVING MONOLITHIC SEPARATION MEDIUM AND METHOD OF USE - A microfluidic device, a device including the microfluidic device and methods of operation are described. | 08-06-2009 |
20090211980 | ION CHROMATOGRAPHY SYSTEMS WITH FLOW-DELAY ELUENT RECYCLE - A chromatographic method including chromatographically separating sample ionic species in an eluent stream, detecting the separated sample ionic species, catalytically combining hydrogen and oxygen gases or catalytically decomposing hydrogen peroxide in a catalytic gas elimination chamber, and recycling the effluent stream from the chamber to the chromatography separation column. The residence time between the detector and the chamber is at least about one minute. Also, flowing the recycle sequentially through two detector effluent flow channels of an electrolytic membrane suppressor. Also, applying heat or UV energy between the detector and the chamber. Also, detecting bubbles after the chamber. Also, a Platinum group metal catalyst and ion exchange medium in the chamber. Apparatus for performing the methods. | 08-27-2009 |
20090218287 | Solid phase extraction apparatuses and methods - Embodiments of the present invention relate to solid phase extraction (“SPE”) apparatuses that include a sintered polycrystalline diamond (“PCD”) stationary phase and methods of performing SPE using a sintered PCD stationary phase. In one embodiment, an SPE cartridge includes a housing that comprises a proximal first end including a housing inlet, a distal second end including a housing outlet, and an interior space extending between the housing inlet and the housing outlet. An SPE stationary phase may be positioned within the interior space and includes an inlet and an outlet. The SPE stationary phase comprises a mass of sintered diamond grains including a plurality of passageways extending therethrough between the inlet and the outlet. In other embodiments, an SPE apparatus may employ a sintered PCD stationary phase in the form of a disk. In yet another embodiment of the present invention, an SPE stationary phase of an SPE apparatus may comprise un-sintered diamond particles. | 09-03-2009 |
20090242486 | SIMULATED MOVING BED CHROMATOGRAPHY FOR STRONGLY RETAINED COMPOUNDS - Simulated moving bed (SMB) chromatography involving a series of columns serially connected in a circuit is performed in a modified protocol by dividing the columns into two groups isolated from flow communication with each other and using one of the two groups solely for extraction of the more strongly retained component from the solid phase while the other group is operated in the conventional SMB manner. The sites of introduction and withdrawal and the site of division between the two groups of columns are all rotated around the circuit as in conventional SMB chromatography, but the process is capable of separating component mixtures with non-linear isotherms and of extracting solutes that are very strongly retained on the solid phase. | 10-01-2009 |
20100116745 | Closed Loop Flow Control Of A HPLC Constant Flow Pump To Enable Low-Flow Operation - A method and apparatus for monitoring and controlling nano-scale flow rate of fluid in the operating flow path of a HPLC system provide fluid flow without relying on complex calibration routines to compensate for solvent composition gradients typically used in HPLC. The apparatus and method are used to correct the flow output of a typical, analytical-scale (0.1-5 mL/min) HPLC pump to enable accurate and precise flow delivery at capillary (<0.1 mL/min) and nano-scale (<1 μL/min) HPLC flow rates. | 05-13-2010 |
20100176058 | CHROMATOGRAPHY METHOD - The present invention relates to a simulated moving bed process, wherein at least one adsorbent is washed after binding of target compound and wherein the outlet of wash liquid from the adsorbent is subsequently passed onto another adsorbent for binding of target compound removed by the washing. In one embodiment, the method comprises binding of at least one target compound using three or more adsorbents connected in series and elution of target compound from said three adsorbents. After the binding to an adsorbent, wash liquid is passed across the adsorbent to recover desorbed and/or unbound target compound, and the outlet of such wash liquid is directed to the adsorbent after the next in the series, to which no feed has yet been added. The target compound is recovered by eluting target compound from the washed adsorbents. | 07-15-2010 |
20100187177 | TWO-VALVE ARRANGEMENT FOR LIQUID CHROMATOGRAPHY - A valve arrangement is disclosed for providing a switchable fluid connection between a fluid delivery system for driving a mobile phase and a stationary phase adapted for separating compounds of a sample fluid comprised in the mobile phase. The valve arrangement comprises a first valve comprising a first port adapted to be coupled to the fluid delivery system, a second port, and a third port, wherein the first valve is adapted to switch, in a first switch transition, from a first state wherein the first port is coupled with the second port, over a second state wherein the first port, the second port and the third port are coupled altogether, to a third state wherein the first port is coupled with the third port, a second valve comprising a fifth port adapted to be coupled to the stationary phase, a sixth port, and a seventh port, wherein the second valve is adapted to switch, in a second switch transition from a fourth state wherein the fifth port is coupled with the sixth port, to a fifth state wherein the fifth port is coupled with the seventh port, a first fluid path connecting the second port and the sixth port, and a second fluid path connecting the third port and the seventh port, wherein the second fluid path comprises a sample introduction path adapted for introducing the sample fluid into the mobile phase. | 07-29-2010 |
20110000853 | PROCESS AND DEVICE FOR SEPARATING FRACTIONS OF A MIXTURE - The invention concerns a method for separating fractions of a mixture using a chromatography device. The method includes the following steps: controlling in one node of the device, the history of a specific variable of the fractions of the mixture to be separated; detecting one characteristic point of the history, the characteristic point being between two successive steps of fraction collecting; comparing the position of the characteristic point relative to a target position; adjusting the amount of mobile phase modifying the position of the characteristic point to cause the position of the characteristic point to coincide with the target position. The invention also concerns a device for implementing the method. The method enables the operation of the device to be automatically set. | 01-06-2011 |
20110094966 | Chiral Stationary Phases For Chromatography Based On Aromatic Allyl Amines - New chiral stationary phases (CSPs) based on chiral selectors covalently bound on a solid support were prepared. Chiral selectors were obtained from enantiomerically pure aromatic amines and 3,5-dinitrobenzoic acid and then linked to the support surface through the allylic double bond. Such obtained materials allow enantioseparation of racemates or enantiomerically enriched compounds. These chiral stationary phases can be used as fillings in chromatographic columns for enantiomer separation of naproxen type drugs and other similar non-steroidal anti-inflammatory drugs (NSAID) by means of high performance liquid chromatography on both the analytical and preparative scale. | 04-28-2011 |
20110108485 | DEVICE FOR CHROMATOGRAPHIC SEPARATIONS - A device is provided for chromatographic separations comprising a manifold comprising a plurality of connectors for connecting to one or more chromatographic separation columns and/or feed or extraction tubing. At least one central duct is formed between at least two connectors forming an inlet and an outlet respectively. The central duct comprises a closable duct valve; and a plurality of branch ducts branching from the central duct to a branch connector. The branch duct comprises a closable branch valve, wherein at least one branch duct is positioned between the inlet and the central duct valve and wherein at least one branch duct is positioned between the outlet and the central duct valve. The device is arranged for carrying out single-column and (continuous) multicolumn chromatographic separations. This allows the purification of biopharmaceutical products without having to develop, demonstrate and validate cleaning procedures for the valves. | 05-12-2011 |
20110120952 | METHOD FOR PRODUCING A TARGET SUBSTANCE USING A SIMULATED MOVING BED CHROMATOGRAPHY SEPARATION SYSTEM - Disclosed is a method for producing a target substance by separating it from a mixture using a simulated moving bed chromatography (SMBC) separation system, which can minimize decreases in separation performance due to interference from a liquid accumulation portion. A material, in which the target substance in the material can be separated using a first SMBC separation system that meets a first condition, is processed to separate and produce the target substance from the material using a second SMBC separation system that meets a second condition, wherein the particle size of a separating agent and fill length of a column tube are both greater, the pressure loss by the column is substantially the same, and the volume ratio of liquid accumulation portions in the endless flow passage of the SMBC separation system is lower. | 05-26-2011 |
20110168632 | Method and device for separating fractions of a mixture - The invention concerns a method for separating fractions of a mixture to be separated, in a device ( | 07-14-2011 |
20110253631 | MULTIFRACTION PURIFICATION PROCESSES AND DEVICES FOR SUCH PROCESSES - A process for continuous or quasi-continuous purification of a multi-component mixture (Fd) by means of at least four individual chromatographic columns through which the mixture is fed by means of at least one solvent (s), is given, wherein the multicomponent mixture (Fd) is to be separated into an integer number n of fractions (Fi), wherein n is at least 5. The columns are grouped into at least six sections ((α | 10-20-2011 |
20110315634 | PROCESS AND APPARATUS FOR SIMULATED MOVING BED SEPARATION COMPRISING BYPASS LINES IN EVERY OTHER BED AND WITH CONTROLLED FLUSHING FLOW RATES DURING INJECTIONS AND WITHDRAWALS - A process for separating a feed F by simulated moving bed adsorption in a SMB device comprises external bypass lines L | 12-29-2011 |
20130248451 | SYSTEM AND PROCESS FOR BIOPOLYMER CHROMATOGRAPHY - A chromatography system for separation of a biopolymer is described, comprising at least one feed tank, at least one hold tank, at least one elution buffer tank, at least one eluate tank, at least two packed bed chromatography columns and for each packed bed chromatography column at least one pump and at least one outlet detector both connected to said each packed bed chromatography column, wherein the feed tank, the hold tank(s), the elution buffer tank and the eluate tank are each connected to the packed bed chromatography columns via a system of valves. | 09-26-2013 |
20130319945 | Device and Method for Field Flow Fractionation - A device for field flux fractioning comprises a sensor to determine the presence of particles in a liquid and a channel impermeable for particles and permeable for liquid. A pump conveys the liquid to first and second paths to the channel, where the second path connects in a first position to the pump outlet and in a second position to the sensor. An injection device injects a sample comprising particles into the liquid flowing through the first path. A distribution device distributes the flow volume conveyed by the pump in a first position at a predetermined ratio to the first and second paths. A control device comprises a valve and a measuring device to measure the flow volume. The valve controls the flow volume in the first path in consideration of the measuring device measurement and the pump conveys the liquid in a flow volume, which can be precisely dosed. | 12-05-2013 |
20140061133 | Method and Apparatus for Split-Flow-Mixing Liquid Chromatography - A method for chromatographically separating analytes of a liquid sample comprises: (i) providing the sample in a conduit; (ii) providing a solvent for the sample; (iii) causing the solvent to simultaneously flow into the conduit so as to expel the sample from the conduit and flow into and through a second conduit so as to exit said second conduit; (iv) simultaneously providing the expelled sample and the exited solvent to a mixing tee-junction such that the expelled sample and the exited solvent mix thereat; (v) providing the mixture of the expelled sample and the exited solvent to a chromatographic column such that the analytes are transferred to the column and are chromatographically separated therein under the influence of a flow of the solvent, or a different solvent or a mixture of solvents. | 03-06-2014 |
20140251913 | SYSTEM AND PROCESS FOR BIOPOLYMER CHROMATOGRAPHY - A chromatography system for separation of a biopolymer is described, comprising at least one feed tank, at least one hold tank, at least one elution buffer tank, at least one eluate tank, at least two packed bed chromatography columns and at least one pump and at least one outlet detector both fluidically connected to said each packed bed chromatography column, wherein the feed tank, the hold tank(s), the elution buffer tank and the eluate tank are each fluidically connected to the packed bed chromatography columns via a system of valves. | 09-11-2014 |
20140284279 | APPARATUS, SYSTEM AND METHOD FOR MASS DIRECTED CHROMATOGRAPHY - The present invention provides an apparatus that can be used to connect a flash chromatography instrument to a fraction collector and a mass detector to perform mass-directed flash chromatography. | 09-25-2014 |