Class / Patent application number | Description | Number of patent applications / Date published |
209011000 | WITH HEAT TREATMENT | 14 |
20080251426 | METHOD FOR THE SEPARATION OF OVERLAPPING DENSITY POROUS MATERIALS FROM LESS POROUS MATERIALS - Enhanced methods for separating of overlapping density porous materials are provided. The methods of the invention exploit the differences in the porosity of porous feed materials compared to that of the solid plastics. In the first stage, air is forced out of the pores of a porous feed material. In the second stage, a solution, having the appropriate density, is forced into the pores. This increases the density of the porous material relative to the density of the solid plastics. As a result, the porous material can be made to sink, while the solid plastics continue to float. | 10-16-2008 |
20090134069 | Integrated Heater and Magnetic Separator - An apparatus for providing thermal and magnetic energy to a receptacle containing a reaction mixture and a magnetic retention member. The apparatus can also control heating of a reaction mixture, and bring about a separation of magnetic particles from the reaction mixture. The reaction mixture typically comprises polynucleotides from a biological sample that are being brought into a PCR-ready form. | 05-28-2009 |
20090194462 | Method for Grading Water-Absorbent Polymer Particles - A process for classifying water-absorbing polymer beads, wherein screens having different mesh sizes are used before and after the postcrosslinking to remove the oversize. | 08-06-2009 |
20100051514 | Materials Separation Module - An automated system for sorting dissimilar materials, and in particular for sorting plastics from other materials and for sorting different types of plastics from one another comprises, depending upon the embodiment, combinations of a sizing mechanism, a friction separation, an air separator, a magnetic separator, a dielectric sensor sortation bed, shaker screening, a ballistic separator, an inductive sensor sortation system and a float/sink tank. The dielectric sensor sortation system may be either analog or digital, depending upon the particular implementation. One or more float/sink tanks can be used, depending upon the embodiment, each with a media of a different specific gravity. The media may be water, or water plus a compound such as calcium chloride. In addition, multiples of the same general type of module can be used for particular configurations. A heavy media system or a sand float process can be used either alternatively or additionally. | 03-04-2010 |
20100288680 | HEATING SYSTEM FOR MATERIAL PROCESSING SCREEN - A separation screen has multiple discs configured to receive a material stream at an in-feed end and move a first group of materials from the material stream up an inclined angle and over a top out-feed end of the separation screen while a second group of materials from the material steam either fall through openings between the discs while being carried up the separation screen or roll off the in-feed end of the separation screen. A heating system heats an outside surface of the discs so that the discs can separate the first group of materials from the material stream during cold environmental temperatures. | 11-18-2010 |
20130118956 | METHOD OF TESTING AN OBJECT AND APPARATUS FOR PERFORMING THE SAME - A method of testing objects and an apparatus for performing the same, the method including loading the objects into a testing unit through a loading unit; testing the objects in the testing unit and determining whether the objects are normal objects or abnormal objects; unloading the tested objects from the testing unit to an unloading unit; directly reversely loading the abnormal objects from the unloading unit into the testing unit when the objects are determined to be abnormal objects; and re-testing the abnormal objects in the testing unit. | 05-16-2013 |
20140102947 | RADIOFREQUENCY PARTICLE SEPARATOR - An apparatus for separating a mineral from a liquid including a housing and a fluid having a mineral bearing particle and contained within the housing. The apparatus further includes a generator configured to apply a radio-frequency electromagnetic field to the mineral bearing particle. The field produces a temperature increase within a portion of the mineral bearing particle and the mineral bearing particle transfers heat into the fluid, the heated fluid imposing motion-inducing forces on the particle. | 04-17-2014 |
20140251876 | METHOD AND APPARATUS FOR COMPONENTS REMOVAL - The proposed invention relates to an apparatus and a method of separating all the parts including but not limited to electronic components, mechanical components, and electromechanical components, modules etc either individually or in sections and modular parts from the main input PCB. The proposed invention is an apparatus and method for component removal during recycling of an electronic device comprising in combination an isothermal system; heating to achieve desired range of temperature within the said isothermal system; at least one system for mechanical handling of the object being recycled; at least one system for selective separation of components being removed. | 09-11-2014 |
20150014224 | HIGH GRADIENT, OIL-COOLED IRON REMOVAL DEVICE WITH INNER CIRCULATION - A high-gradient internal-circulating oil-cooled Magnetic Separator, includes magnetic system coils, an internal-circulating oil path system, an external-cooling system and an oil conservator. The magnetic system coils are used for generating excitation magnetic field to achieve the iron-absorption function, the magnetic paths of the magnetic system coils being an open magnetic path structure. The internal-circulating oil path system is used for allocation and collection circulation of transformer oil. The external-cooling system is used for heat dissipation of transformer oil to achieve internal heat dissipation balance. The oil conservator is used as a supplementary container for the transformer oil expansion during the apparatus's operation. An internal-circulating structure is employed, and external-circulating pipes are simplified, circulating resistance in oil paths being reduced, problems including complex interference in oil paths arrangement, low circulation efficiency, leakage at welding spots, etc. being avoided, ensuring normal operation, and enhancing efficiency of iron removing. | 01-15-2015 |
20150076037 | PROCESS AND SYSTEM FOR DRY RECOVERY OF FINE AND SUPERFINE GRAINED PARTICLES OF OXIDIZED IRON ORE AND A MAGNETIC SEPARATION UNIT - The present invention refers to a system and method for the totally dry treatment of iron-ore wastes from previous mining operations, suitable for both the processing of ore wastes deposited in barrages and wastes stored in piles. The present invention solves the problems of magnetic separation processes that employ the wet and waste-dewatering way, eliminating the risks which throwing solid wastes into retention barrages bring by a system and method wherein the moisture degree of the ore is reduced by means of a mechanical stir dryer (using natural gas to prevent contamination), which is then sorted into various fractions and finally separated magnetically, with the important difference of being an entirely dry process. | 03-19-2015 |
20160074875 | SCRAP SEPARATION SYSTEM AND DEVICE - Methods, systems, and devices to remove slag, sands, and other contaminants from a scrap metal feed. The scrap separation device uses indirect heat provided by one or more heaters directed at an external surface of an outer cylinder to release the contaminants; a unique arrangement of paddles on an inner cylinder to provide kinetic energy to discharge the released contaminants, and apertures through the inner cylinder to allow discharged contaminates to pass to the outer cylinder. The presently disclosed invention further includes a system which comprises at least one magnetic separation unit, a screening unit, and a scrap separation device. The system may remove slag, sands, and other contaminants from a scrap metal feed, and partition the cleaned scrap metal into various size grades, and the recovered contaminating slag and sands into various size grades. | 03-17-2016 |
20160082445 | HOT MAGNETIC SEPARATOR INCLUDING HEAT SHIELD - An apparatus for separating hot particles including a plurality of materials having different magnetic properties includes a plurality of permanent magnets arranged in a magnet assembly and configured to create a magnetic flux capable of providing a coercive force on at least a portion of the particles, a moving surface proximate the magnet assembly for carrying the particles in a downward path through the magnetic flux while the coercive force attracts the portion of the hot particles toward the moving surface, a feed system for supplying the particles onto the moving surface, and a cooling system for maintaining the temperature of the magnets substantially below their Curie point, the cooling system comprising a pair of plates which are disposed between the magnet assembly and the moving surface, the cooling system configured to operate by passing a contained cooling fluid through a gap between the pair of plates. | 03-24-2016 |
20160084314 | THERMAL MANAGEMENT OF BEARINGS IN HOT MAGNETIC SEPARATOR - An apparatus for separating hot particles including a plurality of materials having different magnetic properties includes a plurality of permanent magnets arranged in a magnet assembly and configured to create a magnetic flux capable of providing a coercive force on at least a portion of the particles, the magnet assembly being mounted on a stationary shaft, a moving surface proximate the magnet assembly for carrying the particles in a downward path through the magnetic flux while the coercive force attracts the portion of the hot particles toward the moving surface, the moving surface being mounted on a drive shaft supported by a bearing, and an inert gas supply system which supplies inert gas into a gap between the stationary shaft and the drive shaft for cooling the drive shaft and the bearings, and into the magnet assembly for purging the magnet assembly of oxygen. | 03-24-2016 |
20160129478 | APPARATUS AND METHOD FOR SILICON POWDER MANAGEMENT - Methods and apparatus for separating polysilicon powder from a mixture of granular polysilicon and polysilicon powder are disclosed. The method includes tumbling the polysilicon material in a tumbling device. The tumbling device includes a tumbler drum having one or more lifting vanes spaced apart from one another and extending longitudinally along an interior surface of the tumbler drum. The lifting vanes facilitate separation of polysilicon powder and granules as the tumbler drum is rotated about its longitudinal axis of rotation. | 05-12-2016 |