Class / Patent application number | Description | Number of patent applications / Date published |
208244000 | With Group VIII metal or compound | 11 |
20080251423 | Regenerable Sorbents for Removal of Sulfur from Hydrocarbons and Processes for Their Preparation and Use - A sorbent for use in removing sulfur contaminants from hydrocarbon feedstocks is provided, wherein the sorbent contains zinc aluminate in an amount of at least 40 wt % (calculated as ZnAl | 10-16-2008 |
20090321321 | DESULFURIZING ADSORBENT, PREPARATION METHOD AND USE THEREOF - The invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel, which adsorbent comprises: (1) a carrier consisting of a source of silica, an inorganic oxide binder, and at least one oxide of metal selected from Groups IIB, VB and VIB; (2) at least one accelerant metal which is capable of reducing the sulfur in oxidized state to hydrogen sulfide and has a η<0.5, wherein η=(the amount in percentage of accelerant metal in crystal phase)/(the amount in percentage of accelerant metal in the adsorbent). The active components in the adsorbent can be evenly dispersed on the carrier in a matter close to monolayer dispersion, and which greatly improves the activity of the adsorbent. The preparation method and the use of the above adsorbent are provided. | 12-31-2009 |
20100147749 | Multi-Metallic Catalysts For Pre-Reforming Reactions - The present invention relates to multi-metallic catalyst compositions for improved coke resistance in a hydrocarbon feed pre-reformer unit that comprises nickel and an enhancing component selected from at least one member of the group consisting of ruthenium, palladium, platinum, rhodium, cobalt, gold and silver on a support. The present invention further relates to a catalyst system for improved coke and sulfur resistance in a hydrocarbon feed pre-reformer unit that comprises at least one multi-metallic catalyst composition comprising nickel and an enhancing component selected from at least one member of the group consisting of ruthenium, palladium, platinum, rhodium, cobalt, gold and silver on a support used in conjunction with at least one sulfur capturing component selected from the group comprising copper oxide and zinc oxide. Finally the present invention relates to the use of this catalyst system in a process for pre-reforming a hydrocarbon feed stream. | 06-17-2010 |
20100206776 | Process for adsorption of sulfur compounds from hydrocarbon streams - The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex Ni | 08-19-2010 |
20100243531 | LOW SULFUR FUELS - Provided are methods of reducing a sulfur concentration in a liquid fuel and methods of forming a thiophene/metal complex in a liquid fuel. The method can involve combining a liquid fuel and at least one metal acetate to form a thiophene/metal complex and substantially removing the thiophene/metal complexes from the liquid fuel. A thiophene concentration in a liquid fuel is reduced by the formation of an insoluble complex salt, which can be removed by, for example, centrifuge, filtration, decantation, and/or distillation. | 09-30-2010 |
20110011772 | Nickel and Cobalt Plated Sponge Catalysts - Novel nickel and/or cobalt plated sponge based catalysts are disclosed. The catalyst have an activity and/or selectivity comparable to conventional nickel and/or cobalt sponge catalysts, e.g., Raney® nickel or Raney® cobalt catalysts, but require a reduced content of nickel and/or cobalt. Catalysts in accordance with the invention comprise nickel and/or cobalt coated on at least a portion of the surface of a sponge support. Preferably, the sponge support comprises at least one metal other than or different from the metal(s) contained in the coating. The method of preparing the plated catalysts, and the method of using the catalysts in the preparation of organic compounds are also disclosed. | 01-20-2011 |
20110084002 | PROCESS FOR THE REMOVAL OF SULFONES FROM OXIDIZED HYDROCARBON FUELS - Described herein is a process for the removal of sulfones by mesoporous silica adsorbents having narrow pore size distribution which could be controlled to specification for the selective removal of sulfones from oxidised hydrocarbon fuels wherein the sulfones were present due to oxidative conversion of organo-sulfur compounds by a suitable oxidizing solution. The mesoporous adsorbents showed typically 2-18 times higher equilibrium loading capacity for sulfones in comparison to the commercially available adsorbents. | 04-14-2011 |
20110220552 | METHOD FOR REMOVING CORROSIVE SULFUR COMPOUNDS FROM A TRANSFORMER OIL - A method removes corrosive sulfur compounds from transformer oil. By adding a mixture of rare earths containing aluminum oxide and aluminum silicate to the transformer oil, and enriching the same with an aqueous solution of soluble metal salts, the corrosive sulfur compounds in the transformer oil are neutralized with defined heating and cooling phases. Advantageously, no additional chemical components, such as passivators, are added to the transformer oil. When using a tank for receiving the mixture of the rare earths containing aluminum oxide and aluminum silicate, the reaction can run in the tank. Any aging products that may be present, and the bonded corrosive sulfur compounds are effectively retained within the tank by a filter system, and can be disposed of with the tank. | 09-15-2011 |
20130126394 | IRON OXIDE MAGNETIC NANOPARTICLE, ITS PREPARATION AND ITS USE IN DESULFURIZATION - The present invention provides a method of preparing an iron oxide magnetic nanoparticle, comprising the steps of: i) reacting a water-soluble ferrous salt with a water-soluble ferric salt in a mole ratio of 1:2 in the presence of a base and a citrate to give an iron oxide particle surface-coated with the citrate (c-MNP); ii) reacting the c-MNP obtained in step (i) with a thiophilic compound to give a thiophilic compound-bounded iron oxide particle surface-coated with the citrate (thiophilic-c-MNP); and iii) modifying the thiophilic-c-MNP obtained in step (ii) using a surfactant for phase transfer of the thiophilic-c-MNP from aqueous phase to organic phase. The present invention also relates to the iron oxide magnetic nanoparticle prepared by the above-mentioned method and the use of the nanoparticle in desulfurization. The iron oxide magnetic nanoparticle of the present invention is capable of effective deep desulfurization. | 05-23-2013 |
20140021100 | VISIBLE LIGHT CATALYST FOR REMOVING SULFUR-CONTAINING COMPOUNDS IN FUEL OIL, AND PREPARATION AND USE - This invention relates to a visible-light-responsive photocatalyst for photocatalyticly oxidation desulphurization and method for preparation and application thereof. The catalyst is comprised of one type of metal M | 01-23-2014 |
20150027927 | CATALYSTS FOR OXIDATIVE SULFUR REMOVAL AND METHODS OF MAKING AND USING THEREOF - Catalysts for oxidative sulfur removal and methods of making and using thereof are described herein. The catalysts contain one or more reactive metal salts dispersed on one or more substrates. Suitable reactive metal salts include those salts containing multivariable metals having variable valence or oxidation states and having catalytic activity with sulfur compounds present in gaseous fuel streams. In some embodiments, the catalyst contains one or more compounds that function as an oxygen sponge under the reaction conditions for oxidative sulfur removal. The catalysts can be used to oxidatively remove sulfur-containing compounds from fuel streams, particularly gaseous fuel streams having high sulfur content. Due to the reduced catalyst cost, anticipated long catalyst life and reduced adsorbent consumption, the catalysts described herein are expected to provide a 20-60% reduction in annual desulfurization cost for biogas with sulfur contents ranges from 1000-5000 ppmv compared with the best adsorbent approach. | 01-29-2015 |