Class / Patent application number | Description | Number of patent applications / Date published |
205564000 | Gallium, germanium, indium, vanadium, or molybdenum produced | 7 |
20100044243 | ELECTROCHEMICAL PROCESS FOR THE RECOVERY OF METALLIC IRON AND CHLORINE VALUES FROM IRON-RICH METAL CHLORIDE WASTES - An electrochemical process for the concurrent recovery of iron metal and chlorine gas from an iron-rich metal chloride solution, comprising electrolysing the iron-rich metal chloride solution in an electrolyser comprising a cathodic compartment equipped with a cathode having a hydrogen overpotential higher than that of iron and containing a catholyte having a pH below about 2, an anodic compartment equipped with an anode and containing an anolyte, and a separator allowing for anion passage, the electrolysing step comprising circulating the iron-rich metal chloride solution in a non-anodic compartment of the electrolyser, thereby causing iron to be electrodeposited at the cathode and chlorine gas to evolve at the anode, and leaving an iron-depleted solution. The iron-rich metal chloride solution may originate from carbo-chlorination wastes, spent acid leaching liquors or pickling liquors. | 02-25-2010 |
20100084281 | Method for Collection of Valuable Metal from ITO Scrap - Proposed is a method for collecting valuable metal from an ITO scrap by subjecting the ITO scrap to electrolysis and collecting the result as metallic indium. Specifically, the present invention proposes a method for selectively collecting metallic indium including the steps of subjecting the ITO scrap to electrolysis in an electrolytic bath partitioned with a diaphragm or an ion-exchange membrane, subsequently extracting anolyte temporarily, eliminating tin contained in the anolyte by a neutralization method, a replacement method or other methods, placing a solution from which the tin was eliminated in a cathode side again and performing electrolysis thereto; or a method for collecting valuable metal from an ITO scrap including the steps of obtaining a solution of In or Sn in an ITO electrolytic bath, eliminating the Sn in the solution, and collecting In in the collecting bath. These methods enable the efficient collection of metallic indium from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target. | 04-08-2010 |
20100282615 | Method of Recovering Valuable Metals from IZO Scrap - Provided are a method of recovering valuable metals from IZO scrap, wherein valuable metals are recovered as hydroxides of indium and zinc by using an insoluble electrode as an anode or a cathode and an IZO scrap as the other cathode or anode as the opposite electrode, and performing electrolysis while periodically reversing polarity; and a method of recovering valuable metals from IZO scrap, wherein the hydroxides of indium and zinc obtained by the electrolysis are roasted and valuable metals are recovered as oxides of indium and zinc. Specifically, provided is a method which enables the efficient recovery of indium and zinc from IZO scrap such as a spent indium-zinc oxide (IZO) sputtering target and IZO mill ends arising during the manufacture of such a sputtering target. | 11-11-2010 |
20100288646 | Method of Recovering Valuable Metals from IZO Scrap - Provided are a method of recovering valuable metals from IZO scrap, wherein indium and zinc are recovered as hydroxides by using an IZO scrap as both an anode and a cathode, and performing electrolysis while periodically reversing polarity; and a method of recovering valuable metals from IZO scrap, wherein the hydroxides of indium and zinc obtained by the electrolysis are roasted and indium and zinc are recovered as oxides. Specifically, provided is a method which enables the efficient recovery of indium and zinc from IZO scrap such as a spent indium-zinc oxide (IZO) sputtering target and IZO mill ends arising during the manufacture of such a sputtering target. | 11-18-2010 |
20110139628 | METHOD OF PRODUCING CALCIUM CARBONATE FROM WASTE AND BYPRODUCTS - The present invention concerns a method for producing calcium carbonate containing the steps of extraction of alkaline industrial waste or by-products using as a first extraction solvent an aqueous solution of a salt formed from a weak acid and a weak base, whereby a vanadium-enriched first residue is allowed to settle and a calcium-rich first filtrate is formed, filtration, whereby the first filtrate is separated from the first residue, carbonation of the calcium-rich first filtrate using a carbonation gas, whereby calcium carbonate precipitates and a second filtrate is formed, and a second filtration, whereby the calcium carbonate is separated from the second filtrate. Further, the present invention concerns a method for extracting calcium carbonate and vanadium from alkaline industrial waste or by-products. | 06-16-2011 |
20130081954 | METHOD FOR EXTRACTING GALLIUM FROM FLY ASH - Disclosed is a method for extracting gallium from fly ash, which comprises the following steps: crushing the fly ash and removing Fe by magnetic separation; then dissolving it by using hydrochloride acid to obtain hydrochloric acid leachate; adsorbing gallium contained in the hydrochloric acid leachate with macro-porous cationic resin, followed by eluting to obtain an eluent containing gallium; adding masking agent to mask ferric ion to obtain an eluent containing gallium after masking; adsorbing gallium in the eluent containing gallium after masking with macro-porous cationic resin, followed by eluting to obtain a secondary eluent; adding sodium hydroxide solution into the secondary eluent to react; filtering and removing precipitates after reaction, and then concentrating the filtrate and electrolyzing to obtain metal gallium. The method simplifies the process and improves extraction efficiency of gallium. | 04-04-2013 |
20150122667 | METHOD OF LEACHING MOLYBDENUM FROM SULFIDE MINERAL CONTAINING MOLYBDENUM AND COPPER THROUGH ELECTROLYTIC OXIDATION SCHEME - Disclosed is a method of leaching molybdenum (Mo) from the sulfide mineral containing molybdenum (Mo) and copper (Cu) through the electrolytic oxidation scheme. The method includes dipping the sulfide mineral containing the molybdenum (Mo) and the copper (Cu) into a solution having chloride dissolved therein, loading an electrode into the solution, and then applying a current to the solution. | 05-07-2015 |