Class / Patent application number | Description | Number of patent applications / Date published |
205455000 | Oxygen containing compound produced | 14 |
20090152123 | Methods and Apparatus for Generating Oxidizing Agents - Contemplated devices and methods include an electrolytic cell having a cathode and a carbon felt anode, wherein the carbon felt anode is configured as a flow-through anode for an aqueous solution in which a contaminant is dissolved or dispersed. The cell is operated at a current density that promotes formation of oxidizing species in neutral pH to thus destroy the contaminant and at a flow rate sufficient to prevent oxidative damage of the carbon felt. | 06-18-2009 |
20090242423 | OXIDIZING DEVICE WITH INCREASED OXIDIZING PERFORMANCE AND METHOD OF MANUFACTURING THE SAME - An oxidizing device and an oxidizing method for oxidizing a carbon-containing component in a gaseous mixture containing H | 10-01-2009 |
20110114504 | ELECTROCHEMICAL PRODUCTION OF SYNTHESIS GAS FROM CARBON DIOXIDE - A method for electrochemical production of synthesis gas from carbon dioxide is disclosed. The method generally includes steps (A) to (C). Step (A) may bubble the carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into a plurality of components. Step (B) may establish a molar ratio of the components in the synthesis gas by adjusting at least one of (i) a cathode material and (ii) a surface morphology of the cathode. Step (C) may separate the synthesis gas from the solution. | 05-19-2011 |
20110253550 | Method for producing a synthetic material, in particular a synthetic fuel or raw material, an associated device and applications for said method - A method and a device of producing a synthetic material are provided. Water (H | 10-20-2011 |
20120234691 | METHOD FOR REDUCING CARBON DIOXIDE - The method for reducing carbon dioxide of the present disclosure includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode, a counter electrode and a vessel. The vessel stores an electrolytic solution. The working electrode contains at least one nitride selected from the group consisting of titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, molybdenum nitride and iron nitride. The electrolytic solution contains carbon dioxide. The working electrode and the counter electrode are in contact with the electrolytic solution. A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide. | 09-20-2012 |
20120298521 | ELECTROLYTE SUPPLY TANKS AND BUBBLER TANKS HAVING IMPROVED GAS DIFFUSION PROPERTIES FOR USE IN ELECTROLYZER UNITS - Electrolyte supply tanks and bubbler tanks for oxyhydrogen gas generation systems are provided which eliminate the introduction of electrolyte and water into the induction systems of internal combustion engines. Both types of tanks are equipped with porous polyethylene gas diffusers which break up incoming gas into microscopic bubbles, thereby facilitating the absorption of electrolyte mist and droplets returning to the electrolyte supply tank and minimizing splashing of incoming gas in bubbler tanks. Air diffusers having an average pore diameter of about 70 μm are installed near the bottom of the electrolyte supply tanks, while air diffusers having an average pore diameter of about 35 μm are installed near the bottom of the bubbler tanks. | 11-29-2012 |
20120318680 | DEVICE AND METHOD FOR REDUCING CARBON DIOXIDE - A device for reducing carbon dioxide includes a vessel for holding an electrolyte solution including carbon dioxide, a working electrode and a counter electrode. The working electrode contains boron particles. | 12-20-2012 |
20130118911 | MULTIPHASE ELECTROCHEMICAL REDUCTION OF CO2 - Disclosed is a system and method for reducing carbon dioxide into a carbon based product. The system includes an electrochemical cell having a cathode region which includes a cathode and a non-aqueous catholyte; an anode region having an anode and an aqueous or gaseous anolyte; and an ion permeable zone disposed between the anode region and the cathode region. The ion permeable zone is at least one of (i) the interface between the anolyte and the catholyte, (ii) an ion selective membrane; (iii) at least one liquid layer formed of an emulsion or (iv) a hydrophobic or glass fiber separator. The system and method includes a source of energy, whereby applying the source of energy across the anode and cathode reduces the carbon dioxide and produces an oxidation product. | 05-16-2013 |
20130292260 | Catalytic Oxidation of Dimethyl Ether - A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether. | 11-07-2013 |
20140061058 | AEROBIC OXIDATION OF ALKANES - An aerobic method for oxidizing an alkane is disclosed herein. At least a portion of a surface of a platinum working electrode is activated at an interface between the platinum working electrode and an ionic liquid electrolyte (i.e., 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-heptyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-octyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-nonyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and 1-decyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imidem, and combinations thereof). An interface complex is formed at the interface. An alkane gas is supplied to the interface. The alkane adsorbs at or near the interface complex. The alkane gas in the presence of oxygen is supplied to the interface. While the alkane gas in the presence of oxygen is supplied to the interface, a positive electrode potential is applied to the platinum working electrode, which causes a reactive oxygen species formed at the interface to catalyze oxidation of the adsorbed alkane to form a reaction product. | 03-06-2014 |
20140151240 | ELECTROYLYTIC REDUCTION OF CARBON CAPTURE SOLUTIONS - Disclosed herein is a system comprising an absorber; the absorber being operative to extract carbon dioxide from a flue gas stream to form a carbon capture solution that is rich in carbon dioxide; and an electrolytic cell disposed downstream of the absorber; where the electrolytic cell is operative to reduce carbon dioxide present in the carbon capture solution. Disclosed herein too is a method comprising discharging a flue gas stream from a flue gas generator to an absorber; contacting the flue gas stream with a carbon capture solution; extracting carbon dioxide from the flue gas stream to form a carbon dioxide rich carbon capture solution; discharging the carbon dioxide rich carbon capture solution to an electrolytic cell; and reducing the carbon dioxide to a hydrocarbon in the electrolytic cell. | 06-05-2014 |
20140158547 | Multiphase Electrochemical Reduction of CO2 - Disclosed is a system and method for reducing carbon dioxide into a carbon based product. The system includes an electrochemical cell having a cathode region which includes a cathode and a non-aqueous catholyte; an anode region having an anode and an aqueous or gaseous anolyte; and an ion permeable zone disposed between the anode region and the cathode region. The ion permeable zone is at least one of (i) the interface between the anolyte and the catholyte, (ii) an ion selective membrane; (iii) at least one liquid layer formed of an emulsion or (iv) a hydrophobic or glass fiber separator. The system and method includes a source of energy, whereby applying the source of energy across the anode and cathode reduces the carbon dioxide and produces an oxidation product. | 06-12-2014 |
20150008139 | Electrocatalytic Hydrogenation and Hydrodeoxygenation of Oxygenated and Unsaturated Organic Compounds - A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic compounds in bio-oil. The catalyst is a metal supported on a monolithic high surface area material such as activated carbon cloth. Electrocatalytic hydrogenation and/or hydrodeoxygenation stabilizes the bio-oil under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes. | 01-08-2015 |
20150299876 | ANODE FOR USE IN ZERO-GAP BRINE ELECTROLYZER, BRINE ELECTROLYZER AND METHOD FOR ZERO-GAP BRINE ELECTROLYSIS EMPLOYING SAME - It is an object of the present invention to provide an anode for a zero-gap brine electrolyzer which through employment of a highly roughened surface at a catalyst layer at an anode for a zero-gap brine electrolyzer makes it possible to achieve sufficient liquid permeability and further reduction in electrolyzing voltage and a brine electrolysis method employing same . The present invention relates to an anode for a zero-gap brine electrolyzer equipped with a liquid-permeable conductive substrate | 10-22-2015 |