Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Treating electrolytic or nonelectrolytic coating after it is formed

Subclass of:

205 - Electrolysis: processes, compositions used therein, and methods of preparing the compositions

205080000 - ELECTROLYTIC COATING (PROCESS, COMPOSITION AND METHOD OF PREPARING COMPOSITION)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
205220000 Treating electrolytic or nonelectrolytic coating after it is formed 33
20090020433Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization of Deposits of Material - Electrochemical fabrication methods for forming single and multilayer mesoscale and microscale structures are disclosed which include the use of diamond machining (e.g. fly cutting or turning) to planarize layers. Some embodiments focus on systems of sacrificial and structural materials which are useful in Electrochemical fabrication and which can be diamond machined with minimal tool wear (e.g. Ni—P and Cu, Au and Cu, Cu and Sn, Au and Cu, Au and Sn, and Au and Sn—Pb), where the first material or materials are the structural materials and the second is the sacrificial material). Some embodiments focus on methods for reducing tool wear when using diamond machining to planarize structures being electrochemically fabricated using difficult-to-machine materials (e.g. by depositing difficult to machine material selectively and potentially with little excess plating thickness, and/or pre-machining depositions to within a small increment of desired surface level (e.g. using lapping or a rough cutting operation) and then using diamond fly cutting to complete he process, and/or forming structures or portions of structures from thin walled regions of hard-to-machine material as opposed to wide solid regions of structural material.01-22-2009
20090045070CATHODE FOR ELECTROLYTIC PRODUCTION OF TITANIUM AND OTHER METAL POWDERS - Disclosed herein are electrolytic cells comprising cathodes having a non-uniform current distribution and methods of use thereof.02-19-2009
20090139872Method for producing a sheet steel product protected against corrosion - A cost-favorable process for production of corrosion-resistant sheet steel products, having good characteristics of use for certain application purposes includes applying a zinc-containing coating by electro-galvanizing a flat steel product, finally cleaning mechanically and/or chemically the flat steel product, applying a magnesium-based coating to the finally cleaned zinc-containing coating by means of vapour deposition, and heat treating the coated flat steel product to form a diffusion or convention layer between the zinc-containing coating and the magnesium-based coating at a temperature of 320 ° C. to 335 ° C. under normal atmosphere.06-04-2009
20100326837METHOD FOR MANUFACTURING ANODE FOIL OF ALUMINIUM ELECTROLYTIC CAPACITOR - The present invention provides a method of manufacturing anode foil for aluminum electrolytic capacitors with high capacitance and decreased leakage current. The method has the following steps: dipping etched aluminum foil into pure water having a temperature of 90° C. or higher so as to form a hydrated film on the foil; attaching organic acid to the surface of the hydrated film; performing main chemical conversion on the aluminum foil with application of formation voltage after the attaching step; performing depolarization on the aluminum foil after the main chemical conversion step; and performing follow-up chemical conversion on the aluminum foil after the main chemical conversion step. The main chemical conversion treatment has two-or-more stages. In the first stage of the treatment, the foil is dipped into a phosphate aqueous solution, and in the last stage, it is dipped into an aqueous solution different from the phosphate aqueous solution.12-30-2010
20110114497METHOD FOR SURFACE TREATMENT OF MAGNESIUM OR MAGNESIUM ALLOY BY ANODIZATION - Disclosed herein is a method for the surface treatment of magnesium or a magnesium alloy by anodization to form an anodized oxide coating on the magnesium or magnesium alloy. The method comprises: removing impurities and an oxide layer present on the surface of magnesium or a magnesium alloy using a strongly alkaline aqueous solution (pretreatment); and immersing the pretreated magnesium or magnesium alloy in an alkaline electrolyte and applying a direct current having a current density of 3 A/dm05-19-2011
20110266158METHOD FOR ELECTROCHEMICALLY COVERING AN INSULATING SUBSTRATE - The present invention relates to a process for obtaining a metal, ceramic or composite coating on the surface of a non-conductive material such as plastic, ceramic or wood which comprises: A) preparing a polypyrrole dispersion in aqueous base paint or in an acid type water-soluble pure resin; B) diluting the dispersion resulting from the previous stage with an alcohol in a factor of 1.5; C) applying the dispersion of the conductive polymer resulting from stage B) on the surface to be coated and drying same; and D) obtaining the metal, ceramic or composite coating by means of an electrolytic process or an electrophoretic deposition.11-03-2011
205221000 Selected area 2
20110308958NICKEL-CONTAINING LAYER ARRANGEMENT FOR INTAGLIO PRINTING - A layer arrangement for a gravure cylinder including nickel in at least a first region through the entire thickness (d) thereof, with a mass fraction of at least 0.80, the arrangement being designed to permit an imaging by means of a laser in the first region and to serve as the outermost layer of the gravure cylinder for intaglio printing. A method for producing a layer arrangement for a printing form wherein the layer arrangement includes nickel in at least a first region through the entire thickness (d) thereof, with a mass fraction of at least 0.80 and at least in the radially external region has a solid lubricant component (X) has the following steps: the layer arrangement is produced on a cylinder core by galvanic coating and a printing image is generated on the layer arrangement for intaglio printing.12-22-2011
20140083862ELECTROPLATING APPARATUS WITH CONTACT RING DEPLATING - An electroplating apparatus has a rotor in a head, with a contact ring on the rotor. A lift/rotate actuator may move the head to position a sector of the contact ring into a deplate channel of a deplating station. Electrical current and a deplate liquid are applied directly onto the contacts of the contact ring, from a position radially inward of the contacts. Electrical current and a deplate liquid may also be separately applied onto the back side of the ring contact, from a position radially to the outside of the contact ring. A seal on the deplating station makes sliding contact with the contact ring as the contact ring rotates through the deplate channel, with the seal associated with an exhaust or vacuum opening that pulls deplating and rinse liquid through openings in the contact ring.03-27-2014
205222000 Contacting with solid member or material (e.g., buffing, burnishing, polishing, etc.) 2
20100258445METHOD FOR THE PRODUCTION OF AN ORDERED POROUS STRUCTURE FROM AN ALUMINIUM SUBSTRATE - A method for making a porous structure, includes producing, by anodization of an aluminum substrate, an outer surface layer (10-14-2010
20140102908RESIN-METAL BONDED BODY AND METHOD FOR PRODUCING THE SAME - Disclosed is a resin-metal bonded body of an aluminum metal member and a thermoplastic resin member, which has improved bonding strength and good durability. Also disclosed is a method for producing such a resin-metal bonded body. Specifically disclosed is a resin-metal bonded body which is obtained by bonding an aluminum metal member with a thermoplastic resin member. In this resin-metal bonded body, the aluminum metal member and the thermoplastic resin member are bonded together by an anodic oxide coating having a film thickness of 70-1500 nm or an anodic oxide coating having a triazine thiol in the inner and upper portions. The anodic oxide coating has an infrared absorption spectrum peak intensity ascribed to OH group at 0.0001-0.16.04-17-2014
205223000 Etching of coating 10
20090095634Plating method - A plating method can form a plated film having a uniform thickness over the entire surface, including the peripheral surface, of a substrate. The plating method includes: disposing an anode so as to face a conductive film, formed on a substrate, which serves as a cathode, and disposing an auxiliary cathode on an ring-shaped seal member for sealing a peripheral portion of the substrate; bringing the conductive film, the anode and the auxiliary cathode into contact with a plating solution; and supplying electric currents between the anode and the conductive film, and between the anode and the auxiliary cathode to carry out plating.04-16-2009
20090101513METHOD OF MANUFACTURING A FILM PRINTED CIRCUIT BOARD - A method of manufacturing a film printed circuit board is provided. A film substrate consisting of a polyimide substrate, an alloy layer and a first copper layer is provided. A first lithographic and etching process is performed to pattern the copper layer and the alloy layer and a plurality of conductive line structures is formed on the polyimide substrate. A second copper layer is formed over the polyimide substrate and the conductive line structures. A second lithographic and etching process is performed to pattern the second copper layer.04-23-2009
20090218233Method of Forming a Multilayer Structure - Method of forming a multilayer structure by electroetching or electroplating on a substrate. A seed layer is arranged on the substrate and a master electrode is applied thereto. The master electrode has a pattern layer forming multiple electrochemical cells with the substrate. A voltage is applied for etching the seed layer or applying a plating material to the seed layer. A dielectric material (09-03-2009
20100108531ADHESIVE LAYER FORMING LIQUID AND ADHESIVE LAYER FORMING PROCESS - The object of the invention is to provide an adhesive layer forming liquid capable of maintaining the performance of forming an adhesive layer easily and keeping adhesive property to a resin certainly, and an adhesive layer forming process using the liquid. The adhesive layer forming liquid of the invention is an adhesive layer forming liquid for forming an adhesive layer for bonding a copper and a resin to each other, which is an aqueous solution comprising an acid, a stannous salt, a stannic salt, a complexing agent, and a stabilizer, and which is prepared to set the value of B/A to 0.010 or more and 1.000 or less at the time of the preparation, wherein A represents the concentration (unit: % by mass) of the stannous salt as the concentration of bivalent tin ions, and B represents the concentration (unit: % by mass) of the stannic salt as the concentration of tetravalent tin ions.05-06-2010
20100224501PLATING METHODS FOR LOW ASPECT RATIO CAVITIES - The present invention relates to methods and apparatus for plating a conductive material on a workpiece surface in a highly desirable manner. Using a workpiece-surface-influencing device, such as a mask or sweeper, that preferentially contacts the top surface of the workpiece, relative movement between the workpiece and the workpiece-surface-influencing device is established so that an additive in the electrolyte solution disposed on the workpiece and which is adsorbed onto the top surface is removed or otherwise its amount or concentration changed with respect to the additive on the cavity surface of the workpiece. Plating of the conductive material can place prior to, during and after usage of the workpiece-surface-influencing device, particularly after the workpiece surface influencing device no longer contacts any portion of the top surface of the workpiece, to achieve desirable semiconductor structures.09-09-2010
20100230290MOULD FOR GALVANOPLASTY AND METHOD OF FABRICATING THE SAME - The invention relates to a method (09-16-2010
20110089042 METHOD OF MANUFACTURING A GAS ELECTRON MULTIPLIER - Methods for manufacturing a gas electron multiplier. One method comprises a step of preparing a blank sheet comprised of an insulating sheet with first and second metal layers on its surface, a first metal layer hole forming step in which the first metal layer is patterned by means of photolithography, such as to form holes through the first metal layer, an insulating sheet hole forming step, in which the holes formed in the first metal layer are extended through the insulating layer by etching from the first surface side only, and a second metal layer hole forming step, in which the holes are extended through the second metal layer. Alternatively, the second metal layer hole forming step is performed by electrochemical etching, such that the first metal layer remains unaffected during etching of the second metal layer. In another embodiment, in the second metal layer hole forming step, the first and second metal layers are etched from the outside, thereby reducing the initial thicknesses of the first and second metal layers and the second metal layer is simultaneously etched through the holes in the first metal layer and the insulating sheet, said etching being maintained until the holes extend through the second metal layer, wherein said initial average thickness of the first and second metal layers is between 6.5 μm and 25 μm, preferably between 7.5 μm and 12 μm.04-21-2011
20110162972METHOD FOR PRODUCING POSITIVE ELECTRODE OF THIN-FILM BATTERY AND METHOD FOR PRODUCING THIN-FILM BATTERY - A method for producing a thin-film battery includes a film-formation step of forming a film of a positive-electrode material to form a positive-electrode active material film and an annealing step of annealing the positive-electrode active material film. After the annealing step, a lithium-ion introduction step of introducing lithium ions into the positive-electrode active material film. After the introduction of the lithium ions, a reverse-sputtering step of edging the positive-electrode active material film by reverse sputtering.07-07-2011
20140246327Method for Providing a Code on a Tool - A method is devised for providing a code on a tool. The method includes the steps of providing a tool, providing a coating on the tool by electroplating, and providing a code on the coating by using laser to make dents in the coating, with patches left in the coating. The dents are used as black lines or dots of a bar or array code printed on paper while the patches are used as blank lines or dots of the bar or array code printed on the paper.09-04-2014
20160168743Manufacturing Method of Titanium Oxide Electrode, Active Oxygen Species Production System Including Same, Chlorine Production System, Dye-Sensitised Solar Cell and Electric Double-Layer Capacitor06-16-2016
205224000 Heating 10
20090120799MULTIPLE-STEP ELECTRODEPOSITION PROCESS FOR DIRECT COPPER PLATING ON BARRIER METALS - Embodiments of the invention teach a method for depositing a copper seed layer to a substrate surface, generally to a barrier layer. The method includes placing the substrate surface into a copper solution, wherein the copper solution includes complexed copper ions. A current or bias is applied across the substrate surface and the complexed copper ions are reduced to deposit the copper seed layer onto the barrier layer.05-14-2009
20090242417Manufacturing process of electrodes for electrolysis - A process for manufacturing electrodes for electrolysis, including steps of forming an arc ion plating (AIP) undercoating layer including valve metal or valve metal alloy containing a crystalline tantalum component and a crystalline titanium component on a surface of the electrode substrate comprising valve metal or valve metal alloy, by an arc ion plating method; heat sintering, including the steps of coating a metal compound solution, which includes valve metal as a chief element, onto the surface of the AIP undercoating layer, followed by heat sintering to transform only the tantalum component of the AIP undercoating layer into an amorphous substance, and to form an oxide interlayer, which includes a valve metal oxides component as a chief element, on the surface of the AIP undercoating layer containing the transformed amorphous tantalum component and the crystalline titanium component; and forming an electrode catalyst layer on the surface of the oxide interlayer.10-01-2009
20100206738METHOD OF MANUFACTURING A SURFACE TREATED MEMBER FOR SEMICONDUCTOR LIQUID CRYSTAL MANUFACTURING APPARATUS - A method of manufacturing a surface treated member used for semiconductor liquid crystal manufacturing apparatus, capable of forming an anodized film at a higher hardness than that of an anodizing film formed of an existent method, with no problem in view of the generation of cracks, and excellent in the balance between a high hardness and reduced cracks by a simple and convenient method by forming an anodized film to the surface of a member having an aluminum alloy or pure aluminum as a basic material, then dipping the same in pure water, and applying a hydrating treatment to the anodized film, wherein the hydrating treatment is conducted under the conditions satisfying that a treatment temperature is 80° C. to 100° C. and a treatment time (min)≧−1.5×treatment temperature (° C.)+270.08-19-2010
20120118754Electrode for Oxygen Evolution in Industrial Electrolytic Processes - The invention relates to a catalytic coating suitable for oxygen-evolving anodes in electrochemical processes. The catalytic coating comprises an outermost layer with an iridium and tantalum oxide-based composition modified with amounts not higher than 5% by weight of titanium oxide.05-17-2012
20120125778METHOD OF FABRICATING A THERMAL BARRIER - The invention relates to a method of fabricating a thermal barrier comprising a ceramic coating layer covering at least a portion of the structure of a substrate, wherein the ceramic coating layer is deposited on the substrate solely by a cathodic electrodeposition process between at least one cathode (05-24-2012
20140311913METHOD FOR SYNTHESIS OF NANO-CRYSTALLINE METAL OXIDE POWDERS - A method for synthesis of nanostructured metal oxide powders. The method comprises converting the metallic material into a precipitate of metal hydroxide by an electrochemical reaction and calcinating the metal hydroxide to form the metal oxides. The method of the invention is also used for the development of cermet particulates and topological insulator particles.10-23-2014
20140311914COMPOSITION FOR TREATING SURFACE OF METAL, METHOD FOR TREATING SURFACE OF METAL USING THE COMPOSITION, AND COATING FILM FOR TREATING SURFACE OF METAL UTILIZING THE COMPOSITION AND THE METHOD - A process for metal surface treatment includes dipping a metallic material with a cleaned surface into a composition containing 5 to 30% by weight of a nonionic and/or cationic water-based resin, 100 to 1,000 ppm of trivalent Bi ions, and an aminopolycarboxylic acid at 0.5 to 10 times in molar concentration based on the Bi ions, then performing a first electrolysis using the metallic material as a cathode at a voltage of 0 to 15 V for 10 to 120 seconds, and performing a second electrolysis at a voltage of 50 to 300 V for 30 to 300 seconds, in which the performing the first electrolysis is prior to the performing the second electrolysis, and thereafter rising with water, and baking to deposit a film over the metallic material.10-23-2014
20150340158METHOD FOR PRODUCING CAPACITOR - A capacitor having at least an anode body composed of a tungsten sintered compact and having less leakage current under high-voltage conditions and less variation in leakage current values, obtained by a production method including the steps of: compacting a tungsten powder to obtain a compression body; firing the compression body to obtain an anode body; applying voltage to the anode body, which is used as an positive electrode, in an alkaline fluid; chemically converting the surface layer of the anode body into a dielectric; optionally removing water from the anode body; and heat-treating the anode body, whose surface has been chemically converted into a dielectric, at a temperature of 100° C. or more and 260° C. or less.11-26-2015
205227000 Single metal or alloy coating on single metal or alloy substrate 2
20090078580Method for Forming Cu Film - As a barrier metal film, a Ti film or a Ta film is formed by sputtering method on a substrate. On top of this barrier metal film there is formed a nitride film by sputtering method. A Cu film is then formed on the nitride film by CVD method and thereafter anneal processing is performed at 100 to 400° C. In this manner, by forming the Cu film, the adhesiveness between the barrier metal film and the Cu film improves.03-26-2009
20130008799METHOD FOR FORMING OXIDATION RESISTANT COATING LAYER - The method of forming an oxidation resistant coating layer is for forming an oxidation resistant coating layer containing aluminum on a surface layer of a member (A) formed of metallic material. The method includes a plating treatment step (S01-10-2013
205229000 Predominantly nonmetal electrolytic coating 3
20100294668COATING FOR DECORATIVE METALS WITH IMPROVED MAR AND SCRATCH RESISTANCE AND METHODS OF APPLICATION - Coated articles comprising a decorative metal substrate and a transparent cured coating thereon containing inorganic particles in which the concentration of particles in the exposed surface region of the cured coating is greater than the bulk region of the coating. Preferably, the transparent coating is applied by electrodeposition.11-25-2010
20110005937ELECTRODEPOSITABLE COATING COMPOSITION CONTAINING A CYCLIC GUANIDINE - The present invention is directed towards an electrocoating composition comprising a cyclic guanidine.01-13-2011
20160376725METHOD FOR PERFORMING ELECTROPOLISHING TREATMENT ON ALUMINUM MATERIAL - Provided is a method of performing electropolishing treatment on an aluminum material, which is capable of easily producing an aluminum material having an excellent outer appearance with luster and uniformity on an industrial scale. The method of performing electropolishing treatment on an aluminum material includes immersing the aluminum material in an electrolytic treatment solution in an electrolytic treatment tank, and applying an electrolysis voltage through use of the aluminum material as an anode, to thereby perform electropolishing treatment on a surface of the aluminum material, the method including: performing, as pretreatment for the electropolishing treatment, anodic oxidation treatment; performing, during the electropolishing treatment, bubble-diffusion-preventing treatment; and performing, as post-treatment for the electropolishing treatment, film peeling treatment for an electropolishing film.12-29-2016

Patent applications in class Treating electrolytic or nonelectrolytic coating after it is formed

Patent applications in all subclasses Treating electrolytic or nonelectrolytic coating after it is formed

Website © 2025 Advameg, Inc.