Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Coating predominantly nonmetal substrate

Subclass of:

205 - Electrolysis: processes, compositions used therein, and methods of preparing the compositions

205080000 - ELECTROLYTIC COATING (PROCESS, COMPOSITION AND METHOD OF PREPARING COMPOSITION)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
205159000 Coating predominantly nonmetal substrate 37
20080314755LAYERED ELECTROCATALYST FOR OXIDATION OF AMMONIA AND ETHANOL - A layered electrocatalyst for oxidizing ammonia, ethanol, or combinations thereof, comprising: a carbon support integrated with a conductive metal; at least one first metal plating layer at least partially deposited on the carbon support, wherein the at least one first metal plating layer is active to OH adsorption and inactive to a target species, and wherein the at least one first metal plating layer has a thickness ranging from 10 nanometers to 10 microns; and at least one second metal plating layer at least partially deposited on the at least one first metal plating layer, wherein the at least one second metal plating layer is active to the target species, and wherein the at least one second metal plating layer has a thickness ranging from 10 nanometers to 10 microns, forming a layered electrocatalyst.12-25-2008
20090321267METHOD FOR SURFACE TREATING PLASTIC PRODUCTS - A method for surface treating plastic products is provided. The method includes the steps of providing a plastic substrate, the plastic substrate being made of electroplatable material; forming at least one electroconductive coating on the plastic substrate surface by electro-less plating; forming a copper layer on the electroconductive coating by electroplating; partially etching the surface of the copper layer using a laser to form a rough area; and forming a top coating on the copper layer by electroplating. Both shiny appearance and dusky appearance of the plastic substrate can be present by this method.12-31-2009
20110089041METHODS OF DEPOSITING DISCRETE HYDROXYAPATITE REGIONS ON MEDICAL IMPLANTS - A method for electrochemically depositing discrete regions of calcium phosphate onto a medical implant. The method includes providing an implant including at least one area having a metallic surface. At least a portion of the metallic surface is contacted with an electrolyte solution comprising calcium ions and phosphate ions. The metallic surface is used as a cathode, and an electrical potential is applied between the cathode and the electrolyte solution. The electrical potential is applied with a constant current density of from about 10 to about 50 mA/cm04-21-2011
20120080319METAL AND METAL OXIDE CO-FUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES FOR HIGH PERFORMANCE GAS SENSORS - A method of co-functionalizing single-walled carbon nanotubes for gas sensors, which includes the steps of: fabricating single-walled carbon nanotube interconnects; synthesizing tin oxide onto the single-walled carbon nanotube interconnects; and synthesizing metal nanoparticles onto the tin oxide coated single-walled carbon nanotube interconnects.04-05-2012
20140216942Carbon-Metal Thermal Management Substrates - A method of manufacturing a thermal management hybrid article includes electroplating a copper layer on a graphitic layer, adhering the copper-plated graphitic layer to a plate of aluminum with a nano-copper paste to form a substrate, heating the substrate in a forming gas at a temperature less than 500° C. to melt to recrystallize the nano-copper paste, and cooling the substrate after the heating. A method of manufacturing a thermal management hybrid article includes electroplating a copper layer on a graphitic layer, electroplating copper on a plate of aluminum, and soldering the copper-plated layer on the graphitic layer to the copper-plated plate of aluminum. A method of manufacturing a thermal management hybrid article also includes electroplating a copper layer on a graphitic layer and immersing the copper-plated graphitic layer in molten aluminum to cast the an aluminum layer on the copper layer.08-07-2014
20140299480Copper Plating Solutions and Method of Making and Using Such Solutions - The present technology generally relates to copper plating solutions. Specifically, the present technology includes a copper plating solution comprising a source of copper ions and a conductivity salt wherein the copper plating solution has a pH between 1.7 and 3.5 as is essentially free of chloride ions. The present technology also relates to a method of using such copper plating solutions.10-09-2014
20140374269WHEEL RIM FOR BICYCLE AND PRODUCING METHOD OF PRODUCING THE SAME - A wheel rim for bicycle of the present invention includes a carbon fiber main body and two strengthen layers. The strengthen layers are made of metal and are attached to two side surfaces of the main body by electroplating. As such, brake pads can rub against the wheel rim on the strengthen layers. Heat dissipation efficiency is enhanced so as to keep the wheel rim away from deformation, and the wheel rim is reinforced as well. Therefore, the wheel rim is made durable.12-25-2014
205161000 Perforated, foraminous, or permeable substrate 4
20110083966ELECTRODE FOR LEAD-ACID BATTERY AND METHOD FOR PRODUCING SUCH AN ELECTRODE - An electrode for lead-battery comprises a current collector covered by an active layer of lead-containing paste. The current is formed by a glassy carbon substrate on which is deposited an intermediate layer. The glassy carbon substrate has preferably a thickness comprised between 1 mm and 3 mm whereas the thickness of the intermediate layer is advantageously comprised between 50 μm and 200 μm. In a particular embodiment, the glassy carbon substrate is in form of a comb.04-14-2011
20120111730COMPOSITE ELECTRODE AND METHOD FOR MANUFACTURING THE SAME - A composite electrode and a method for manufacturing the same are disclosed. By using a composite electrode that includes a porous support made of ceramic or metal and a conductive polymer or a metal oxide formed on a surface of the porous support, a capacitor or secondary cell that provides increased charge/discharge capacity and increased energy/output density, as well as high-temperature stability and high reliability, can be manufactured.05-10-2012
20120325672Method for Depositing a Metal Onto A Porous Carbon Layer - The invention relates to a method for depositing a metal M1 onto a carbon layer, as well as to a method for manufacturing an electrode for fuel cells and to a method for manufacturing a fuel cell. The method for depositing a metal M1 onto a porous carbon layer according to the invention includes a step of depositing said metal M1 by means of the electrochemical reduction of an electrolytic solution of a salt of the metal M12-27-2012
20150361573METHOD OF MAKING CURRENT COLLECTOR - A method of making a current collector includes following steps. A carbon nanotube layer is provided, and the carbon nanotube layer includes a first surface and a second surface opposite to each other. A carbon nanotube composite layer is formed via electroplating a first metal layer on the first surface and electroplating a second metal layer on the second surface. A first carbon nanotube layer and a second carbon nanotube layer is formed by separating the carbon nanotube composite layer, wherein the first carbon nanotube layer is attached on the first metal layer, and the second carbon nanotube layer is attached on the second metal layer.12-17-2015
205162000 Ceramic or glass substrate 9
20090242414ELECTRONCHEMICAL DEPOSITION OF TANTALUM AND/OR COPPER IN IONIC LIQUIDS - The invention relates to a process for the electrochemical deposition of tantalum and/or copper on a substrate in an ionic liquid comprising at least one tetraalkylammonium, tetraalkylphosphonium, 1,1-dialkylpyrrolidinium, 1-hydroxyalkyl-1-alkylpyrrolidinium, 1-hydroxyalkyl-3-alkylimidazolium or 1,3-bis(hydroxyalkyl)imidazolium cation, where the alkyl groups or the alkylene chain of the hydroxyalkyl group may each, independently of one another, have 1 to 10 C atoms.10-01-2009
20090277797METHOD AND SYSTEM FOR REMOVING CONTAMINANTS FROM A FLUID - A method and system for removing contaminants from a fluid are provided. The method can generally include providing microstructures in the fluid. At least some of the contaminants in the fluid are attracted to the microstructures and adhered to the microstructures. With the contaminants attached to the microstructures, the microstructures can be separated from the fluid so that the contaminants are thereby removed from the fluid.11-12-2009
20110048957Method for forming an ultrathin Cu barrier/seed bilayer for integrated circuit device fabrication - A structure and method for forming a relatively thin diffusion barrier/seed bilayer for copper metallization in an electronic device is disclosed. A single layer of an alloy is formed over a dielectric (and possibly the copper layer). The alloy includes a copper platable metal (e.g., ruthenium) and a nitride forming material (e.g., tungsten) and nitrogen. The alloy layer is annealed, and the alloy naturally segregates into two layers. The first layer is a barrier layer including the nitride forming material and nitrogen. The second layer is a seed layer including the copper platable metal.03-03-2011
20110259753CERAMIC ELEMENT INLAID WITH AT LEAST ONE METALLIC DECORATION - The invention relates to an inlaid ceramic decoration (10-27-2011
20130213817METHOD FOR SHRINKING LINEWIDTH OF EXTREME DIMENSION - A method for shrinking a linewidth on a substrate includes the steps of applying a stretching force on the substrate, defining a line on a top surface of the substrate and releasing the applied stretching force. The applied force is executed by mechanical stretching or thermal expansion and has a direction parallel to the line.08-22-2013
20130306485Molecularly Imprinted Conducting Polymer Film Based Aqueous Amino Acid Sensors - Molecularly imprinted conducting polymer (MICP) films were electro-polymerized on glassy carbon electrode having specific recognition sites for amino acid viz. L-tyrosine and/or L-cysteine. The amino acid templates in various imprinted films were ejected out by over-oxidation followed by washing and stabilization. Again, the template leached MICP films were modified with metal oxides [oxides of Cu11-21-2013
20140202870ELECTRODEPOSITION OF GALLIUM FOR PHOTOVOLTAICS - An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.07-24-2014
20150090600COPPER-NICKEL ALLOY ELECTROPLATING BATH AND PLATING METHOD - The present invention provides a copper-nickel alloy electroplating bath which is characterized by containing (a) a copper salt and a nickel salt, (b) a metal complexing agent, (c) a plurality of conductivity-imparting salts that are different from each other, (d) a compound that is selected from the group consisting of disulfide compounds, sulfur-containing amino acids and salts of these compounds, (e) a compound that is selected from the group consisting of sulfonic acid compounds, sulfimide compounds, sulfamic acid compounds, sulfone amides and salts of these compounds, and (f) a reaction product of a glycidyl ether and a polyhydric alcohol. This copper-nickel alloy electroplating bath is also characterized by having a pH of 3-8.04-02-2015
20160153108CHEMICAL AND ELECTROCHEMICAL SYNTHESIS AND DEPOSITION OF CHALCOGENIDES FROM ROOM TEMPERATURE IONIC LIQUIDS06-02-2016
205164000 Synthetic resin substrate 17
20090120798Method For Manufacturing Plated Resin Molded Article - The present invention provides a method for manufacturing plated resin molded article having strong adhesion of plating and giving beautiful appearance. Specifically, it provides a method for manufacturing plated resin molded article having the steps of: contact-treating a thermoplastic resin molded article using an acid or base free from heavy metal; treating the contact-treated thermoplastic resin molded article by a catalyst imparting liquid; forming an electrically conductive layer on the surface of the thermoplastic resin molded article using a direct plating method; and applying electroplating to the electrically conductive layer; without applying the step of etching by an acid which contains heavy metal.05-14-2009
20090294296METHOD OF MANUFACTURING FLEXIBLE FILM - A method of manufacturing a flexible film is disclosed. The method includes (a) forming at least one hole on an insulating film, (b) after the step (a), forming a first metal layer on a first surface corresponding to an inner circumferential surface of the hole, and at least one of a second surface corresponding to an upper surface of the insulating film and a third surface corresponding to a lower surface of the insulating film, and (c) forming a second metal layer on the first metal layer. A thickness of the first metal layer is smaller than a thickness of the second metal layer.12-03-2009
20100032308METALLIZATION PROCESS FOR MAKING FUSER MEMBERS - The presently disclosed embodiments are directed to an improved metallization process for making fuser members which avoids the extra steps of metal nanoparticle seeding or special substrate treatment. In embodiments, a metallized substrate, formed by dip-coating or spraying with a metal nanoparticle dispersion which is subsequently thermally annealed, is used for the complete fabrication of the fuser member.02-11-2010
20100059386DIRECT PLATING METHOD AND SOLUTION FOR PALLADIUM CONDUCTOR LAYER FORMATION - A surface of an object to be plated is subjected to a treatment for palladium catalyst impartation to impart a palladium catalyst to the surface of an insulating part thereof. A palladium conductor layer is formed on the insulating part from a solution for palladium conductor layer formation which contains a palladium compound, an amine compound, and a reducing agent. On the palladium conductor layer is then directly formed a copper deposit by electroplating. Thus, the work is converted to a conductor with the solution for palladium conductor layer formation, which is neutral, without using an electroless copper plating solution which is highly alkaline. Consequently, the polyimide is prevented from being attacked and no adverse influence is exerted on adhesion. By adding an azole compound to the solution for palladium conductor layer formation, a palladium conductor layer is prevented from depositing on copper. Thus, the reliability of connection between the copper part present on a substrate and the copper deposit formed by electroplating is significantly high.03-11-2010
20110226629PROCESS FOR OPTOPHYSICAL SURFACE TREATMENT OF POLYMER SUBSTRATES AND DEVICE FOR IMPLEMENTING THE PROCESS - A surface treatment process which enables a substrate (polymer) to be given specific physical properties, especially surface nanoporosity, for example with a view to electroless metallizing it, and which completely replaces surface treatment by sulfo-chromic pickling. The surface treatment includes a hybrid UV/corona treatment of the substrate surface followed by non-electrolytic metallization. A device for implementing these processes is also disclosed.09-22-2011
20110240482PLATING CATALYST LIQUID, PLATING METHOD, AND METHOD FOR PRODUCING LAMINATE HAVING METAL FILM - A plating catalyst liquid which places little burden on the environment, which does not roughen the surface of a plating target, which can be easily controlled for the amount of plating catalyst applied and which is at low risk of inflammation and is highly safe, and a plating method using the plating catalyst are provided. The plating catalyst liquid includes a palladium compound, water, and a water-soluble combustible liquid serving as a combustible liquid ingredient, has a flash point of 40° C. or more and contains the water-soluble combustible liquid in an amount of 0.1 to 40 wt %.10-06-2011
20110284388Resin Plating Method Using Graphene Thin Layer - According to an example embodiment a method of plating resin using a graphene thin layer includes forming a graphene thin layer on a resin substrate and electroplating the resin substrate having the graphene thin layer fog on the resin substrate.11-24-2011
20120073978USE OF IONIC LIQUIDS FOR THE PRETREATMENT OF SURFACES OF PLASTICS FOR METALLIZATION - Process for coating plastics with metals, wherein the plastics are pretreated with a composition comprising at least one salt having a melting point of less than 100° C. at 1 bar (hereinafter referred to as ionic liquid).03-29-2012
20120305406Method for Metallising Objects Which Have at Least Two Different Plastics on the Surface - The following method is to improve selectivity during metallisation of surface areas to be metallised on objects 12-06-2012
20130277224Method for Making a Wave-Absorbing Sheet - In a method for making a wave-absorbing sheet, first emulsified mixture is provided by mixing wave-absorbing particles with graphene solution so that the graphene solution absorbs the wave-absorbing particles. Secondly, second emulsified mixture is provided by adding and blending resin solution in the first emulsified mixture. Thirdly, third emulsified mixture is provided by adding and blending interface modifier in the second emulsified mixture. Then, two conductive substrates are submerged in the third emulsified mixture, and voltage is provided to the third emulsified mixture so that the wave-absorbing particles, the resin solution and the graphene solution are evenly coated on the conductive substrates. Then, a wave-absorbing sheet is provided by eroding and removing the conductive substrates. Finally, the wave-absorbing sheet is washed and dried. The wave-absorbing sheet is thin, light and flexible, and exhibits a wide absorption frequency band and a high absorption rate.10-24-2013
20150060292Method for Forming Three Dimensional Circuit - A method for a forming three dimensional circuit is provided. A plastic base is provided. A metal layer is bonded on the plastic base by a metal coating process. The thickness of the metal layer is thickened by an electroplating process. The metal layer is trimmed to form a circuit pattern thereon by a laser engraving process, whereby, the working-hours can be reduced and the cost of material can also be reduced when the three dimensional circuit is manufactured.03-05-2015
20150338366ELECTROCHEMICAL TEST STRIP AND MANUFACTURING METHOD THEREOF - The present disclosure illustrates an electrochemical test strip and manufacturing method thereof. In the embodiment, a manufacturing process which is not complex and has well precision and convenience is provided to manufacture the electrochemical test strip for testing human body fluid. A surface metallization layer serves as a conductive signal transmission medium, so that the manufacturing cost can be reduced, and the material can be recovered by dissolving the metal in surface metallization.11-26-2015
205165000 Conductive material applied to substrate by vacuum or vapor deposition 1
20120193241METHOD FOR APPLYING SEMI-DRY ELECTROPLATING METHOD ON SURFACE OF PLASTIC SUBSTRATE - A method for applying a semi-dry electroplating method on a surface of plastic substrate is related to an electroplating method of plastic. which realizes the surface metallization of plastic materials, simplifies the electroplating procedure, dramatically reduces the amount of waste water, reduces the pollution to environment and expands electroplatable range of plastic substrates, is provided. Water-free cleaning and dust removal are conducted to a plastic substrate; a first-time activated treatment is conducted to the surface of the plastic substrate; a PVD plating metallic base layer, an alloy transition layer and a metallic electrical conductive layer are applied in turn on it, ultrasonic water washing and a second-time activated treatment are conducted on the treated plastic substrate; the treated plastic substrate is directly electroplated with acid copper or is moved to a nickel plating bath, and then complete the final surface treatment according to the actual process requirements.08-02-2012
205166000 Conductive material applied to substrate by painting, spraying, or immersion 4
20100300889ANODICALLY ASSISTED CHEMICAL ETCHING OF CONDUCTIVE POLYMERS AND POLYMER COMPOSITES - A novel activation/etch method is disclosed for conductive polymer substrates and conductive polymer composite substrates to achieve good adhesion to subsequently applied coatings. The method in a preferred case involves anodically polarizing conductive polymers/polymer composites in aqueous etching solutions.12-02-2010
205167000 Conductive material applied to substrate by plating from bath containing metal ions and reducing agent (e.g., electroless plating, etc.) 3
20080202937Method for Manufacturing an Emi Shielding Element - A method for manufacturing an EMI shielding element from a sheet of polymer material includes forming the shielding element by vacuum- or pressure-molding. The formed element is then chemically etched to roughen its surface on a microscopic scale. The surface is subsequently treated with a catalyzing solution to enable the shielding element to be plated by electroless plating. A first metallic layer is deposited on the etched and catalyzed surface by electroless plating, and a second metallic layer is deposited on the first by electrolytic plating.08-28-2008
205169000 Conductive material is copper or nickel 2
20150322585CONDUCTIVE COATING FILM FORMING BATH - This invention relates to a conductive-coating bath comprising an aqueous solution containing (A) a copper compound, (B) a complexing agent, (C) an alkali metal hydroxide, (D) a C11-12-2015
20160083859METHOD OF ELECTROPLATING PLASTIC SUBSTRATE - Provided is a method of electroplating a plastic substrate, wherein the treatment time of processes including coarsening, copper plating, nickel plating, etc. is decreased, and a semi-gloss nickel plating process (a semi-gloss nickel plating layer) in a conventional electroplating process is obviated. Also, production capacity is remarkably increased and the plating cost and use of chromium are decreased, thus lowering environmental pollution. Furthermore, the process time and the thickness of the copper and nickel plating layers are decreased, and the electroplated surface of the plastic substrate by PVD is eco-friendly and exhibits superior heat resistance, corrosion resistance, and anti-scratching and anti-oxidation properties. Moreover, as the temperature and the gas content are adjusted in the PVD process, the resulting PVD layer can show various vivid colors having a metallic and 3D appearance, and conventional monotonous color defects can be overcome.03-24-2016

Patent applications in all subclasses Coating predominantly nonmetal substrate

Website © 2025 Advameg, Inc.