Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Treating process fluid by means other than agitation or heating or cooling

Subclass of:

205 - Electrolysis: processes, compositions used therein, and methods of preparing the compositions

205080000 - ELECTROLYTIC COATING (PROCESS, COMPOSITION AND METHOD OF PREPARING COMPOSITION)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
205098000 Treating process fluid by means other than agitation or heating or cooling 55
20090173632SECONDARY CELL ELECTRODE AND FABRICATION METHOD, AND SECONDARY CELL, COMPLEX CELL, AND VEHICLE - In a nonaqueous electrolyte cell-oriented electrode (07-09-2009
20090205965Method and apparatus for forming oxide coating - Disclosed are a method and an apparatus for forming an oxide coating film with excellent corrosion resistance and adhesiveness on a cathode made of a metal plate by a simple process at low cost. A direct current voltage is applied between an anode (08-20-2009
20100000872ELECTROPLATING METHOD - The surface of a metal base is electroplated by utilizing an induction codeposition phenomenon using at least one of carbon dioxide and inert gas, an electroplating liquid containing a metal powder dispersed therein, and a surfactant in a supercritical state or a subcritical state. The concentration of the metal in the electroplating liquid is in a saturated or supersaturated state. Accordingly, the dissolution speed of the metal base can be suppressed, and, at the same time, a plating layer having a smooth surface can be formed in a short time by utilizing an induction codeposition phenomenon. The electroplating method can be applied even when the metal base is formed of a metallic thin film provided on a surface of an insulating film provided on the substrate, or even when the metal is copper, zinc, iron, nickel, or cobalt. The above constitution can provide an electroplating method which, in electroplating on the surface of a metal base, can prevent the dissolution of the metal base to realize normal electroplating even in the case of a very thin metal base.01-07-2010
20100072071SYSTEMS AND METHODS FOR ELECTROCOATING A PART - Embodiments of systems and methods for electrocoating a part are presented herein. According to one embodiment, an electrocoating system comprises a tank, a pump in fluid communication with the tank, and an external anode positioned outside of the tank. The external anode is a substantially membrane-free metal pipe configured to provide an electric charge to a fluid for electrocoating a part. The system may further comprise one or more internal nozzles positioned inside of the tank to direct an electrically charged fluid from the pump into the tank for electrocoating a part. In addition, the system may further comprise one or more external nozzles positionable outside of the tank to direct an electrically charged fluid from the pump to one or more selected areas of a part positioned for electrocoating outside of the tank.03-25-2010
20100116673CATIONIC ELECTRODEPOSITION COATING AND APPLICATION THEREOF - The present invention relates to 05-13-2010
20100122909METHOD OF PREPARING CHROMIUM PLATING BATH AND METHOD OF FORMING PLATING FILM - A chromium plating bath containing trivalent chromium ions and hexavalent chromium ions is prepared by a method including the steps of: (A) mixing chromic acid and an organic acid in an aqueous solution containing these acids and reducing chromic acid by the organic acid so as to prepare an aqueous solution not containing hexavalent chromium ions; (B) adding a pH adjustor to the aqueous solution not containing hexavalent chromium ions so as to adjust pH to a value of 1 to 4; and (C) further adding chromic acid to the aqueous solution not containing hexavalent chromium ions and having undergone the pH adjustment so as to prepare an aqueous solution containing trivalent chromium ions and hexavalent chromium ions. The chromium plating bath containing both trivalent chromium ions and hexavalent chromium ions can be prepared while easily and assuredly adjusting the contents (content ratio) of trivalent chromium ions and hexavalent chromium ions to predetermined values (a predetermined value).05-20-2010
20120152751ELECTROLYTIC COPPER PROCESS USING ANION PERMEABLE BARRIER - Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and a counter electrode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, a counter electrode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. Some of the described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.06-21-2012
20120175263CONFIGURATION AND METHOD OF OPERATION OF AN ELECTRODEPOSITION SYSTEM FOR IMPROVED PROCESS STABILITY AND PERFORMANCE - Methods, systems, and apparatus for plating a metal onto a work piece with a plating solution having a low oxygen concentration are described. In one aspect, a method includes reducing an oxygen concentration of a plating solution. The plating solution includes about 07-12-2012
20120325668Gallium Electrodeposition Processes and Chemistries - Solutions and processes for electrodepositing gallium or gallium alloys includes a plating bath free of complexing agents including a gallium salt, an indium salt, a combination thereof, and a combination of any of the preceding salts with copper, an acid, and a solvent, wherein the pH of the solution is in a range selected from the group consisting of from about zero to about 2.6 and greater than about 12.6 to about 14. An optional metalloid may be included in the solution.12-27-2012
20130032484ELECTROPLATING APPARATUS - A system for electroplating a rotogravure cylinder out of a plating solution having a concentration of copper ions wherein the cylinder is connectable to a current source is provided. The system includes a plating apparatus configured to copper plate the cylinder comprising a non-dissolvable anode, a plating tank configured to receive the cylinder, a controller configured to control operation of the apparatus, and a tube for delivering a mixture of a hardener and the plating solution to the plating tank.02-07-2013
20130284602DEVICE AND METHOD FOR METALIZING WAFERS - A device for metalizing wafers, in particular microchip wafers, in an electrolyte, contains a plurality of holder arrangements. Each holder arrangement has a chamber for the electrolyte which is separate from the electrolyte-receiving chambers in other holder devices, a ring acting as cathode, and an anode system as the anode being associated with each wafer.10-31-2013
20130292255ALUMINUM OR ALUMINUM ALLOY MOLTEN SALT ELECTROPLATING BATH HAVING GOOD THROWING POWER, ELECTROPLATING METHOD USING THE BATH, AND PRETREATMENT METHOD OF THE BATH - The purpose of the present invention is to provide an electrical Al plating bath that poses little danger of exploding or igniting as a result of contacting air or water, and contains no benzene, toluene, xylene, naphthalene, or 1,3,5-trimethylbenzene, which have detrimental effects to humans. The present invention provides an electrical aluminum or aluminum alloy fused salt plating bath that is obtained by heat treatment of an electrical aluminum or aluminum alloy fused salt plating bath containing (A) a halogenated aluminum as the primary component and (B) at least one other type of halide after adding (C) one, two or more reducible compounds selected from the group consisting of hydrides of elements in Group 11-07-2013
20140209472ELECTROLYTIC PROCESS USING CATION PERMEABLE BARRIER - Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.07-31-2014
20150136609Sn ALLOY PLATING APPARATUS AND Sn ALLOY PLATING METHOD - An Sn alloy plating apparatus is disclosed which can relatively easily perform control of an Sn alloy plating solution, including control of the Sn ion concentration and the acid concentration of the plating solution. The Sn alloy plating apparatus includes: a plating bath configured to hold therein an Sn alloy plating solution in which an insoluble anode a the substrate are to be disposed opposite each other; a plating-solution circulation line configured to circulate the Sn alloy plating solution in the plating bath; an Sn supply reservoir configured to draw a part of the Sn alloy plating solution from the plating-solution circulation line, perform electrolysis in a presence of the Sn alloy plating solution to replenish the Sn alloy plating solution with Sn ions and an acid that stabilizes Sn ions, and return the Sn alloy plating solution that has been replenished with the Sn ions to the plating bath; and a dialysis unit configured to draw a part of the Sn alloy plating solution from the plating-solution circulation line, remove the acid from the Sn alloy plating solution, and then return the Sn alloy plating solution to the plating bath.05-21-2015
20150329982ELECTROPLATING CELL, AND METHOD OF FORMING METAL COATING - An electroplating cell includes: an anode chamber in which an anode chamber solution is stored; and a separator that separates the anode chamber and a cathode. The electroplating cell undergoes a modification treatment of introducing a carboxylic acid group or a derivative thereof into a base material of the separator. The separator selectively allows permeation of metal ions contained in the anode chamber solution.11-19-2015
20160068985METHOD AND APPARATUS FOR UNIFORMLY METALLIZATION ON SUBSTRATE - The present invention relates to applying at least one ultra/mega sonic device and its reflection plate for forming standing wave in a metallization apparatus to achieve highly uniform metallic film deposition at a rate far greater than conventional film growth rate in electrolyte. In the present invention, the substrate is dynamically controlled so that the position of the substrate passing through the entire acoustic field with different power intensity in each motion cycle. This method guarantees each location of the substrate to receive the same amount of total sonic energy dose over the interval of the process time, and to accumulatively grow a uniform deposition thickness at a rapid rate.03-10-2016
20160174389SYSTEM AND METHOD FOR ELECTROPLATING OF HOLE SURFACES06-16-2016
205099000 Purifying electrolyte 18
20090078577Plating Solution Recovery Apparatus and Plating Solution Recovery Method - A plating solution recovery apparatus for electroplating, the apparatus comprises a circulation tank; a sludge removing device; a concentrating device; an iron compound crystallizing device; an iron compound separating device; an iron compound redissolving device; an iron ion removing device; pipelines sequentially connecting the circulation tank, the sludge removing device, the concentrating device, the iron compound crystallizing device, the iron compound separating device, the iron compound redissolving device, and then the iron ion removing device in a downstream direction from a base point coincident with the circulation tank; a pipeline connecting from the iron ion removing device to the circulation tank; a pipeline connecting from the iron compound separating device to the circulation tank; and a flow path changing device connecting to the circulation tank and provided in at least one portion selected from a group of portions, respectively, between the sludge removing device and the concentrating device, between the concentrating device and iron compound crystallizing device, and between the iron compound crystallizing device and the iron compound separating device. With the apparatus being used, the plating solution can be recovered in the manner that sludge and iron are removed from the plating solution used for electroplating of a steel strip. Further, with the apparatus being used, even when stopping the operation of a device(s) related to iron removal, a continuous electroplating operation can be maintained without reducing the operation rate of the sludge removing device.03-26-2009
20090107845Alkaline Electroplating Bath Having A Filtration Membrane - There is described an alkaline electroplating bath for depositing zinc alloys on substrates having an anode and a cathode, wherein the anode region and the cathode region are separated from each other by a filtration membrane.04-30-2009
20090272651Method for producing high-purity nickel - A method for producing high-purity nickel, which involves using a hydrochloric acid solution system to electro-deposit high-purity nickel, characterized in that, it includes the following steps sequentially: 3N-grade-grade electrolytic nickel was used as anode and the electro-deposition was carried out in a hydrochloric acid system, the solution obtained from the electro-deposition was extracted by a three-level countercurrent extraction using anion extraction solvents, and then back-extracted and degreased. After that, the solution was passed through the anion exchange resin to be further purified by ion exchange, and finally put into the electrolytic cell to deposit nickel. The amount of the solution that was put into the cell and the amount of the solution that was drawn out of the cell after the electro-deposition was the same? After the glow discharge analysis by a mass spectrography, the high-purity nickel obtained by the method according to the present invention was the 5N-grade-grade high-purity nickel. The cost was low and the contamination was prevented.11-05-2009
20100187118METHOD AND APPARATUS FOR DECONTAMINATION OF FLUID - The invention relates to methods and devices for the decontamination of fluid, particularly the removal of heavy metals and/or arsenic and/or their compounds from water, by means of electrolysis, wherein the water to be purified subjected to electrodes of different polarities. The invention can include means for control of the pH of the fluid. The invention can also include control systems that allow self-cleaning of electrodes, self-cleaning of filters, and automatic monitoring of maintenance conditions.07-29-2010
20110210006PROCESS AND DEVICE FOR CLEANING GALVANIC BATHS TO PLATE METALS - The invention concerns a process which is used to plate functional layers of acidic or alkaline zinc or zinc alloy baths which contain nitrogenous organic additives, a soluble zinc salt and if necessary other metal salts selected from Fe, Ni, Co and Sn salts, where the bath composition for the regeneration is conveyed through an appropriate device having an ion exchanger resin to remove cyanide ions.09-01-2011
20110272285Method for the electrolytic deposition of chromium and chromium alloys - The invention relates to a method for depositing chromium and/or chromium alloys on metals, and particularly on sheet steel, wherein an alloy layer is electrolytically deposited on the metal from a solution containing chromium ions and/or chromium ions and further metal ions such as Zn, Cd, In, Pb, Bi, Mo, Cu, Fe, Ni, Co, Mn, Al, Sb, Ag, Sn, Mg, wherein chromium hydroxide precipitated from a chromium (III) solution is used for regenerating the electrolyte solution using chromium (III) ions.11-10-2011
20120298515METHOD AND DEVICE FOR THE WET-CHEMICAL TREATMENT OF MATERIAL TO BE TREATED11-29-2012
20130264212Primary Production of Elements - Electrowinning methods and apparatus are suitable for producing elemental deposits of high quality, purity, and volume. Respective cathodes are used during electrowinning for bearing the elemental product, segregating impurities, dissolving morphologically undesirable material, and augmenting productivity. Silicon suitable for use in photovoltaic devices may be electrodeposited in solid form from silicon dioxide dissolved in a molten salt.10-10-2013
20130334052PROTECTING ANODES FROM PASSIVATION IN ALLOY PLATING SYSTEMS - An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.12-19-2013
20140076730METHOD AND APPARATUS FOR EXTRACTING ENERGY AND METAL FROM SEAWATER ELECTRODES - A method of harvesting Group I metals from waste materials, including agitating Group I metal-containing materials in water to define a Group I metal-rich aqueous solution, removing any solid material from the Group I metal-rich aqueous solution, and filling the cathode portion of an electrochemical cell with the Group I metal-rich aqueous solution. A current collector is introduced into the Group I metal-rich aqueous solution, a steel electrode is operationally connected to the cathode portion, and the cathode portion is operated to deposite Group I metal onto the steel electrode.03-20-2014
20140097088ELECTROFILL VACUUM PLATING CELL - The disclosed embodiments relate to methods and apparatus for immersing a substrate in electrolyte in an electroplating cell under sub-atmospheric conditions to reduce or eliminate the formation/trapping of bubbles as the substrate is immersed. Various electrolyte recirculation loops are disclosed to provide electrolyte to the plating cell. The recirculation loops may include pumps, degassers, sensors, valves, etc. The disclosed embodiments allow a substrate to be immersed quickly, greatly reducing the issues related to bubble formation and uneven plating times during electroplating.04-10-2014
20140158544METHOD FOR REMOVING IRON IONS FROM GALVANIZING FLUX SOLUTION - A method for removing iron ions from galvanizing flux solution includes adding zinc chloride and ammonium chloride to a solvent in a preparing tank to prepare a first galvanizing flux solution which is transferred to a treatment tank, immersing an iron/steel piece in the first galvanizing flux solution to dissolve part of the surface to form iron ions, adding oxygen-rich gas to the first galvanizing flux solution to oxidize the iron ions to form a second galvanizing flux solution containing iron oxide precipitation, filtering the second galvanizing flux solution by a multilayer filter to form a third galvanizing flux solution without iron oxide or with low content of iron oxide, transferring the third galvanizing flux solution back to the treatment tank, and repeating the above steps by immersing another iron/steel piece in the first galvanizing flux solution so as to continuously remove iron ions generated.06-12-2014
20140246324METHODS FOR ELECTROCHEMICAL DEPOSITION OF MULTI-COMPONENT SOLDER USING CATION PERMEABLE BARRIER - Processes and systems for electrochemical deposition of a multi-component solder by processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids.09-04-2014
20150299882NICKEL ELECTROPLATING SYSTEMS HAVING A GRAIN REFINER RELEASING DEVICE - Disclosed herein are grain refiner releasing devices for releasing a grain refiner compound into an electrolyte solution as it is flowed to a cathode chamber during an electroplating operation. In some embodiments, the devices may include a housing for flowing an electrolyte solution having a fluidic inlet and a fluidic outlet, a particle filter located within the housing configured to remove particles from the electrolyte solution as it flows within the housing from the fluidic inlet to the fluidic outlet, and a grain refiner holder located within the housing for holding the grain refiner compound and for contacting the grain refiner compound with the electrolyte solution as the electrolyte solution flows within the housing from the fluidic inlet to the fluidic outlet. Also disclosed herein are nickel electroplating systems including such grain refiner releasing devices and nickel electroplating methods employing grain refiner compounds.10-22-2015
20160002814METHOD FOR REMOVING RARE EARTH IMPURITIES FROM NICKEL-ELECTROPLATING SOLUTION - A method for removing rare earth impurities from a nickel-electroplating solution by adding a rare earth compound to the nickel-electroplating solution containing rare earth impurities, keeping the electroplating solution at 60° C. or higher for a certain period of time, and then removing precipitate generated by the heating from the nickel-electroplating solution together with the added rare earth compound by sedimentation and/or filtration.01-07-2016
20160115616ELECTROPLATING SYSTEM AND METHOD OF USING ELECTROPLATING SYSTEM FOR CONTROLLING CONCENTRATION OF ORGANIC ADDITIVES IN ELECTROPLATING SOLUTION - Electroplating techniques including an electroplating system and a method for using the electroplating system are provided. The electroplating system has: an electroplating apparatus for electroplating a workpiece, the electroplating apparatus has an electroplating tank configured to contain a solution including target organics; a first reservoir configured to receive the solution including the target organics from the electroplating tank, and to hold the solution including the target organics; a foaming mechanism configured to, in the first reservoir, separate the target organics from the solution through foaming action such that the solution with a reduced concentration of the target organics is separated from a foam including the separated target organics; and a diverting mechanism configured to selectively feed the solution with the reduced concentration of the target organics to one of the first reservoir and the electroplating tank of the electroplating apparatus.04-28-2016
20160115618SYSTEM FOR TREATING SOLUTION FOR USE IN ELECTROPLATING APPLICATION AND METHOD FOR TREATING SOLUTION FOR USE IN ELECTROPLATING APPLICATION - Electroplating techniques including a system for treating a solution for use in an electroplating application and a method for using the system are provided. The system can have: a gas dispersing portion configured to treat the solution by dispersing a gas into the solution to control a concentration of a predetermined cation of a metal to be electroplated in the electroplating application; a filter portion configured to treat the solution by filtering the solution to remove a quantity of metal residue; and a circulation mechanism configured to divert the solution to one of a plating tool and a combination of the gas dispersing portion and the filter portion based on a result of an analysis of the solution.04-28-2016
20160177467APPARATUS AND PROCESS OF ELECTRO-CHEMICAL PLATING06-23-2016
205100000 Treating rinse solution (e.g., rinse water, etc.) 1
20110290652Electrodeposition Painting Systems And Methods For Electrode Sterilizing In Electrodeposition Painting Systems - Electrodeposition painting systems may include an electrodeposition bath containing an electrodeposition paint solution, wherein the electrodeposition paint solution is in contact with an electrodeposition bath anode that charges the paint such that it electrocoats parts submerged therein to form electrocoated parts, a rinse tank that rinses the electrocoated parts, wherein a rinse tank reservoir of the rinse tank is capable of fluid communication with the electrodeposition bath, a filter that filters the electrodeposition paint solution to separate filtered water from the paint, and an ionizer assembly including one or more electrodes in contact with the filtered water and a power supply connected to the one or more electrodes, wherein the power supply causes a plurality of electrode ions from the one or more electrodes to enter the filtered water to produce filtered water including electrode ions such that the filtered water including electrode ions flows into and sterilizes the electrodeposition paint solution.12-01-2011
205101000 Regenerating or maintaining electrolyte (e.g., self-regulating bath, etc.) 19
20090026083CONTINUOUS COPPER ELECTROPLATING METHOD - A continuous copper electroplating method wherein copper is continuously plated on a workpiece to be placed in a plating vessel accommodating a copper sulfate plating bath containing organic additives by use of a soluble or insoluble anode and a workpiece as a cathode, the method including overflowing the plating bath from the plating vessel in an lo overflow vessel under which the plating bath in the overflow vessel is returned to the plating vessel, providing an oxidative decomposition vessel, and returning a plating bath from the oxidative decomposition vessel through the overflow vessel to the plating vessel to circulate the plating bath between the plating vessel and oxidative decomposition vessel, and metallic copper is immersed in the plating bath in the oxidative decomposition vessel and exposed to air bubbling, so that decomposed/degenerated organic products formed by decomposition or degeneration produced during the copper electroplating can be oxidatively decomposed.01-29-2009
20090038947Electroplating aqueous solution and method of making and using same - In one embodiment of the invention, an electroplating aqueous solution is disclosed. The electroplating aqueous solution includes at least two acids, copper, at least one accelerator agent, and at least two suppressor agents. The at least one accelerator agent provides an acceleration strength of at least about 2.0 and the at least two suppressor agents, collectively, provide a suppression strength of at least about 5.0. Methods of making and using such an electroplating aqueous solution are also disclosed.02-12-2009
20090229986CONTINUOUS COPPER ELECTROPLATING METHOD - Disclosed is a method for a repeated electroplating of a workpiece to be plated as a cathode by using an insoluble anode in a plating vessel accommodating a copper sulfate plating bath, wherein a copper dissolution vessel different from the plating vessel is provided, the plating bath is transferred to the copper dissolution vessel and is returned from the copper dissolution vessel to the plating vessel for circulating the plating bath between the plating vessel and the copper dissolution vessel, copper ion supplying salt is charged into the copper dissolution vessel and dissolved in the plating bath so that copper ions consumed by the plating can be replenished, and the workpiece to be plated is continuously electroplated, characterized in that the plating bath is permitted to transfer between the anode side and the cathode side, and the plating bath is returned to vicinity of the anode in the return of the plating bath from the copper dissolution vessel to the plating vessel. Plating performance impairing components, which are produced when the copper ion supplying salt is dissolved in the plating bath for replenishing the copper ions, are oxidized and decomposed, whereby defective plating due to the presence of the plating performance impairing components can be prevented.09-17-2009
20090255819Electroplating apparatus - An apparatus for electroplating a rotogravure cylinder out of a plating solution is disclosed. The apparatus includes a plating tank adapted to support the cylinder and to contain a plating solution so that the cylinder is at least partially disposed into the plating solution. The apparatus also includes a non-dissolvable anode at least partially disposed within the plating solution. A current source is electrically connected to the non-dissolvable anode and to the cylinder. An ultrasonic system may be provided to introduce wave energy into the plating solution includes at least one transducer element mountable within the tank and a power generator adapted to provide electrical energy to the transducer element. A holding tank having a circulation pump, a mixing system and heating and cooling elements for the plating solution may be provided.10-15-2009
20100032305Method of replenishing indium ions in indium electroplating compositions - Methods of replenishing indium ions in indium electroplating compositions are disclosed. Indium ions are replenished during electroplating using indium salts of certain weak acids. The method may be used with soluble and insoluble anodes.02-11-2010
20100116674Method for replenishing tin and its alloying metals in electrolyte solutions - Methods are disclosed for replenishing tin and its alloying metals in an aqueous electrolytic plating bath using an acidic solution containing stannous oxide. During electroplating of tin or tin alloys the stannous ions and alloying metal ions are depleted. To maintain continuous and efficient electroplating processes predetermined amounts of the plating bath containing tin and its alloying metals are bailed out. The bail out is then mixed with a predetermined amount of acidic solution containing stannous oxide and any alloying metals. The mixture is then retuned to the plating bath to return the stannous ions and alloying metal ions to their steady state concentrations.05-13-2010
20100170801ELECTROPLATING APPARATUS - An apparatus for electroplating a rotogravure cylinder out of a plating solution is disclosed. The apparatus includes a plating tank adapted to support the cylinder and to contain a plating solution so that the cylinder is at least partially disposed into the plating solution. The apparatus also includes a non-dissolvable anode at least partially disposed within the plating solution. A current source is electrically connected to the non-dissolvable anode and to the cylinder. An ultrasonic system may be provided to introduce wave energy into the plating solution includes at least one transducer element mountable within the tank and a power generator adapted to provide electrical energy to the transducer element. A holding tank having a circulation pump, a mixing system and heating and cooling elements for the plating solution may be provided.07-08-2010
20110083965Electrolyte Concentration Control System for High Rate Electroplating - An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu04-14-2011
20120043214Nickel pH Adjustment Method and Apparatus - An electrolytic cell for adjusting pH and replenishing nickel in a nickel plating solution of a nickel plating bath and a method of using the same is disclosed. The electrolytic cell comprises an inlet for receiving nickel plating solution from the nickel plating bath; a cooled cathode connected to a first bus bar connected to a negative terminal of a power supply; a plurality of nickel anodes capable of creating hydrogen gas on the cooled cathode when current is applied, connected to at least a second bus bar, the at least the second bus bar connected to a positive terminal of the power supply; and an outlet for returning nickel plating solution in the electrolytic cell to the nickel plating bath.02-23-2012
20120118749Electrolytic Dissolution of Chromium from Chromium Electrodes - An electrolytic cell for replenishing chromium content of a trivalent chromium. electrolyte and a method of replenishing trivalent chromium content using the electrolytic cell is provided. The method comprising the steps of immersing a chromium electrode and a second electrode in a trivalent chromium electrolyte and applying an alternating pulse current across the chromium electrode and the second electrode. In this manner, trivalent chromium is electrolytically dissolved from the chromium electrode and the trivalent chromium content of the electrolyte in which the chromium electrode is immersed is enriched.05-17-2012
20120298516METHOD AND APPARATUS FOR SINGLE SIDE BILAYER FORMATION - An apparatus for single-sided bilayer formation includes a first fluid chamber including a sidewall and a second fluid chamber extending through the sidewall. A barrier wall, having at least a portion defining a hydrophobicity or hydrophilicity surface property, separates the first and second fluid chambers and includes a nanopore therein across which a planar lipid bilayer (PLB) is formed. In use, an electrolyte is added to the first and second fluid chambers and a lipid/organic solvent mixture is added to the first fluid chamber to form a lipid/organic solvent layer. The electrolyte level within the first fluid chamber is adjusted such that the lipid layer is raised above the barrier wall and a PLB is formed through single-sided spontaneous formation from the first fluid chamber across the nanopore.11-29-2012
20130056361SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD - A substrate processing apparatus can arbitrarily switch the flow direction of a processing liquid without causing a change in the overall flow rate of the processing liquid nor creating a non-uniform flow of the processing liquid. The substrate processing apparatus includes a plurality of inlet pipes and a plurality of outlet pipes, connected to a processing tank and to be switched therebetween to create a flow of a processing liquid in the processing tank in a direction different from that of the processing liquid before the switching. The inlet pipes and the outlet pipes are each provided with a flow control device which is controlled by a control section so that upon switching between the pipes, the flow rate of the processing liquid flowing therethrough changes with time.03-07-2013
20130112563FLOW-THROUGH CONSUMABLE ANODES - Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte. The active consumable anode material(s) can have a microstructure which is fine-grained and/or amorphous to ensure a uniform anodic dissolution.05-09-2013
20140158545APPARATUS FOR ELECTROCHEMICAL DEPOSITION OF A METAL - The invention as described in the following relates to an apparatus for the electrochemical deposition of a metal on a substrate, which apparatus is capable of refreshing an electrolyte used for the deposition in a continuous way. Furthermore, the invention as described relates to a method of refreshing an electrolyte for the electrochemical deposition of a metal on a substrate.06-12-2014
20140332393Sn ALLOY PLATING APPARATUS AND Sn ALLOY PLATING METHOD - An Sn alloy plating apparatus is disclosed. The apparatus includes a plating bath configured to store an Sn alloy plating solution therein with an insoluble anode and a substrate immersed in the Sn alloy plating solution, an Sn dissolving having an anion exchange membrane therein which isolates an anode chamber, in which an Sn anode is disposed, and a cathode chamber, in which a cathode is disposed, from each other, a pure water supply structure configured to supply pure water to the anode chamber and the cathode chamber, a methanesulfonic acid solution supply structure configured to supply a methanesulfonic acid solution, containing a methanesulfonic acid, to the anode chamber and the cathode chamber, and an Sn replenisher supply structure configured to supply an Sn replenisher, produced in the anode chamber and containing Sn ions and a methanesulfonic acid, to the plating bath.11-13-2014
20150008134ELECTROCHEMICAL DEPOSITION APPARATUS AND METHODS FOR CONTROLLING THE CHEMISTRY THEREIN - An electrochemical deposition system is described. The electrochemical deposition system includes one or more electrochemical deposition modules arranged on a common platform for depositing one or more metals on a substrate, and a chemical management system coupled to the one or more electrochemical deposition modules. The chemical management system is configured to supply at least one of the one or more electrochemical deposition modules with one or more metal constituents for depositing the one or more metals. The chemical management system can include at least one metal enrichment cell and at least one metal-concentrate generator cell.01-08-2015
20150034489METHOD OF ELECTROPLATING WITH Sn-ALLOY AND APPARATUS OF ELECTROPLATING WITH Sn-ALLOY - To provide a method of electroplating with Sn-alloy in which a problem of deposition of metals on an anode when electroplating with Sn-alloy such as Sn—Ag based-alloy or the like is performed is solved and a soluble anode is enabled to be used. Dividing an inside of a plating tank into a cathode cell and an anode cell by an anion-exchange membrane; supplying plating solution including Sn ions to the cathode cell; supplying acid solution to the anode cell; electroplating by energizing an object to be plated in the cathode cell and an anode made of Sn in the anode cell; and using the acid solution including Sn ions liquated out form the anode made of Sn along with progress of plating as replenishing solution of Sn ions for plating solution in the cathode cell.02-05-2015
20150354085APPARATUS AND METHODS OF MAINTAINING TRIVALENT CHROMIUM BATH PLATING EFFICIENCY - An apparatus for maintaining trivalent chromium plating bath efficiency includes an aqueous electroplating bath, which includes trivalent chromium ions and a sulfur compound, and an ultraviolet (UV) radiation source that provides UV radiation to the bath effective to inhibit a reduction in plating efficiency of the bath.12-10-2015
20160194771USE OF OXYGENATED OR POLYOXYGENATED WEAK ACIDS, OR MINERALS, COMPOUNDS OR DERIVATIVES THAT GENERATE SAME, IN COPPER ELECTROWINNING PROCESSES IN CATHODES OR ANODES OF ELECTROLYTIC CELLS, ORIGINATING FROM THE LEACHING OF A COPPER MINERAL07-07-2016

Patent applications in class Treating process fluid by means other than agitation or heating or cooling

Patent applications in all subclasses Treating process fluid by means other than agitation or heating or cooling

Website © 2025 Advameg, Inc.