Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Laminated or coated (i.e., composite having two or more layers)

Subclass of:

204 - Chemistry: electrical and wave energy

204193000 - APPARATUS

204194000 - Electrolytic

204279000 - Elements

204280000 - Electrodes

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
204290010 Laminated or coated (i.e., composite having two or more layers) 61
20080230378Methods and systems for forming tapered cooling holes - A method for forming holes in an object is provided. The method includes providing an electrochemical machining (ECM) electrode including a first section having insulation that circumscribes the first section, and a second section having insulation that extends only partially around the second section. The method also includes inserting the electrode into the object, such that in a single pass the electrode forms a hole that includes a first portion having a first cross-sectional area and a second portion having a second cross-sectional area.09-25-2008
20080230379Methods and systems for forming cooling holes having circular inlets and non-circular outlets - A method for forming a hole in an object is provided. The method includes forming a starter hole in the object, providing an electrochemical machining electrode that includes insulation that extends only partially around the electrode, and inserting the electrode into the starter hole to form a hole in the object that has an inlet defined by a first cross-sectional area and an outlet defined by a second cross-sectional area.09-25-2008
20100084266Electrodes with Mechanically Roughened Surface for Electrochemical Applications - The invention relates to a method for roughening the surface of a metal sheet used as electrode support in industrial electrochemical applications, and an electrode made by such method. Mechanical roughening is imparted by skin-passing the sheet between two rollers of a rolling mill, at least one of which is patterned according to a predetermined profile to be transferred by compression to the surface of the metal sheet.04-08-2010
20100101944VACUUM MANDREL FOR USE IN FABRICATING AN IMPLANTABLE ELECTRODE - A vacuum mandrel for use in fabricating an implantable electrode comprises a hollow body member and a first groove provided radially on an outer surface of the hollow body member. The first groove is adapted to receive an implantable electrode and retain the electrode in place with a vacuum pressure during an elastomeric encapsulation of the electrode. The vacuum mandrel further comprises a vacuum port provided in the first groove.04-29-2010
20110297534Photolytic Processing Of Materials With Hydrogen - An apparatus and method for hydrogenating a sample, such as a semiconductor wafer. The invention utilizes a top electrode comprising a UV-transparent dielectric and a metal contact to provide an electric field to the sample while the sample is irradiated with UV light and hydrogenated with a hydrogenating gas or gasses. The field may be applied to the sample at a number of different pressures, temperatures and concentrations of gas to manipulate the rate and type of hydrogenation. Further, the method of hydrogenating the sample may be used in conjunction with masking and etching techniques.12-08-2011
20120103798PROTEIN-IMMOBILIZED ELECTRODE AND METHOD OF MANUFACTURING THE SAME, AND FUNCTIONAL ELEMENT AND METHOD OF MANUFACTURING THE SAME - In one example embodiment, a protein-immobilized electrode is stably used for long time. In one example embodiment, a method of manufacturing the protein-immobilized electrode includes immobilizing cytochrome c552 having high stability to a chemically-stable gold electrode while maintaining electron transfer capability of the cytochrome c552. In one example embodiment, a self-assembled monolayer is formed on a gold electrode by using hydrophobic thiol and hydrophilic thiol. By dipping the gold electrode on which the self-assembled monolayer is formed in a cytochrome c552 solution, a protein-immobilized electrode in which a cytochrome c552 is immobilized to the gold electrode with the self-assembled monolayer in between is produced.05-03-2012
20140001036PHOTOCATALYST FOR WATER SPLITTING COMPRISING GALLIUM SELENIDE AND PHOTOELECTRODE FOR WATER SPLITTING COMPRISING THE SAME01-02-2014
20140174916CATALYTIC COMPOSITION FOR THE ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE - The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO06-26-2014
20150060266TWO MASK PROCESS FOR ELECTROPLATING METAL EMPLOYING A NEGATIVE ELECTROPHORETIC PHOTORESIST - A negative electrophoretic photoresist is applied over a plurality of protruding disposable template portions on a substrate. A silo structure is placed on planar portions of the negative electrophoretic photoresist that laterally surround the plurality of protruding disposable template portions. The negative electrophoretic photoresist is lithographically exposed employing the silo structure and a first lithographic mask, which includes a transparent substrate with isolated opaque patterns thereupon. After removal of the silo structure, the negative electrophoretic photoresist is lithographically exposed employing a second lithographic mask, which includes a pattern of transparent areas overlying the planar portions of the negative electrophoretic photoresist less the areas for bases of metal structure to be subsequently formed by electroplating. The negative electrophoretic photoresist is developed to form cavities therein, and metal structures are formed by electroplating within the cavities. The negative electrophoretic photoresist and the plurality of protruding disposable template portions can be subsequently removed.03-05-2015
20150294796ASSEMBLIES AND METHODS OF STABILIZATION - Some embodiments of the present invention provide an assembly for harvesting light comprising a first molecule joined to a metal oxide surface through a surface linking group and a second molecule joined to the metal oxide surface. Such assemblies can harvest light to do useful chemistry, such as in a dye-sensitized photoelectrochemical cell, or a molecular catalyst-solar cell system. In other embodiments, the harvested light can be converted into electricity, such as in a dye-sensitized solar cell. Other embodiments of the present invention provide methods for stabilizing a chromophore or a catalyst on a surface. These methods are applicable, for example, to dye-sensitized photoelectrochemical cells where the surface-bound chromophores are known to be unstable under aqueous conditions.10-15-2015
204290030 Having three or more layers 17
20110073470MULTI-LAYER CATHODE BLOCK - A multi-layer cathode block (03-31-2011
20120228128METHOD AND ELECTRODE FOR DEFINING AND REPLICATING STRUCTURES IN CONDUCTING MATERIALS - The present invention concerns an electrochemical pattern replication method, ECPR, and a construction of a conductive electrode for production of applications involving micro and nano structures. An etching or plating pattern, which is defined by a conductive electrode, a master electrode, is replicated on an electrically conductive material, a substrate. The master electrode is put in close contact with the substrate and the etching/plating pattern is directly transferred onto the substrate by using a contact etching/plating process. The contact etching/plating process is performed in local etching/plating cells, chat are formed in closed or open cavities between the master electrode and the substrate.09-13-2012
20120267242SPHERICAL ELECTRODE AND ELECTROLYSIS CELL INCLUDING SAME - The present invention relates to a spherical electrode and to a spherical electrode cell, and more particularly, to a method for forming an electrode on an ion-exchange resin or forming an electrolysis cell on an ion-exchange resin. The spherical electrode or spherical electrolysis cell of the present invention can be used for: electrolysis reactors, for example in hydrolysis for producing hydrogen and oxygen gas; for the production of oxidants by means of the electrolysis of electrolytes such as a sodium chloride solution and sodium chlorite; or fuel cells that generate electricity using oxygen and hydrogen.10-25-2012
20120305390ELECTRODE AND METHOD OF FORMING THE MASTER ELECTRODE - An electrode for forming an electrochemical cell with a substrate and a method of forming said electrode. The electrode comprises a carrier provided with an insulating layer which is patterned at a front side. Conducting material in an electrode layer is applied in the cavities of the patterned insulating layer and in contact with the carrier. A connection layer is applied at the backside of the carrier and in contact with the carrier. The periphery of the electrode is covered by the insulating material.12-06-2012
20130032475TOOL FOR GALVANICALLY COATING SLIDING BEARINGS - The invention relates to a tool for galvanically coating sliding bearings comprising at least one cover, to which a thief is attached.02-07-2013
20130112552ELECTROCATALYTIC TUBE OF ELECTROCHEMICAL-CATALYTIC CONVERTER FOR EXHAUST EMISSIONS CONTROL - An electrocatalytic tube for controlling exhaust emissions, which adopts to purify the exhaust, comprises a tube, an anode layer and a cathode layer. The tube is composed of a solid-state electrolyte layer. The solid-state electrolyte layer includes an enclosed chamber, an inner wall formed inside the enclosed chamber, and an outer wall formed outside the enclosed chamber. The enclosed chamber has a sub-atmospheric reducing environment. The anode layer and cathode layer are respectively coated on the inner wall and outer wall of the solid-state electrolyte layer. The reducing environment facilitates an electromotive force to occur between the anode layer and the cathode layer. The electromotive force promotes catalytic decomposition of nitrogen oxides of the exhaust on the cathode layer.05-09-2013
20140238847LIGHT ABSORBING LAYER FOR PHOTOELECTRODE STRUCTURE, PHOTOELECTRODE STRUCTURE INCLUDING THE SAME, AND PHOTOELECTROCHEMICAL CELL INCLUDING THE PHOTOELECTRODE STRUCTURE - A light absorbing layer for a photoelectrode structure, the light absorbing layer including copper oxide, wherein metallic copper (Cu) is present at a grain boundary of the copper oxide. Also, a photoelectrode structure including the light absorbing layer, a photoelectrochemical cell including the photoelectrode structure, and a solar cell including the light absorbing layer.08-28-2014
204290040 Rare earth metal (i.e., Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu) or compound containing 1
20130153411ELECTRODE BASE, NEGATIVE ELECTRODE FOR AQUEOUS SOLUTION ELECTROLYSIS USING SAME, METHOD FOR PRODUCING THE ELECTRODE BASE, AND METHOD FOR PRODUCING THE NEGATIVE ELECTRODE FOR AQUEOUS SOLUTION ELECTROLYSIS - The negative electrode for aqueous solution electrolysis of the present invention includes a conductive substrate having a nickel surface, a mixture layer including metal nickel, a nickel oxide and carbon atoms, formed on the conductive substrate surface, and an electrode catalyst layer formed on the mixture layer surface, wherein the electrode catalyst layer is formed by a layer including a platinum group metal or a platinum group metal compound. The negative electrode for aqueous solution electrolysis of the present invention is preferably used in electrolysis of an aqueous solution of an alkali metal halide, and the like.06-20-2013
204290050 Organic compound containing 3
20090294284REFERENCE ELECTRODE - A reference electrode is disclosed. The reference electrode is developed by spreading an aqueous KCl gelling agar solid gel/poly(vinyl chloride)carboxylated (PVC—COOH) double layer on a screen-printing Ag/AgCl electrode body. Such polymer double layer can maintain ion concentration and keep stable chemical capacitance potential during measurement. The reference electrode of the present invention provides fast response time and high stability for major ions detection measurements in a wide range.12-03-2009
20100072060Biomedical Electrode and Method of Formation Thereof - The present disclosure relates to biomedical electrodes incorporating hydrophobic material and methods of formation thereof.03-25-2010
204290070 And free carbon containing 1
20100170783METHOD FOR THE PRODUCTION OF A DIAMOND ELECTRODE, AND DIAMOND ELECTRODE - A method for producing a diamond electrode comprising synthetically produced and electrically conductive (doped) diamond particles, which are embedded into a support layer of electrically non-conductive material. The doped diamond particles are introduced as a single layer between two films that form the support layer, the films then being permanently connected to each other and the diamond particles being exposed on both sides of the support layer.07-08-2010
204290080 Noble metal (i.e., Ru, Rh, Pd, Os, Ir, Pt, Ag, or Au) or compound containing 6
20090194410Electrode of an Integrated Circuit - The present invention refers to an electrode comprising a first metallic layer and a compound comprising at least one of a nitride, oxide, and oxynitride of a second metallic material.08-06-2009
20120061237CATHODE FOR ELECTROLYTIC PROCESSES - The invention relates to a cathode for electrolytic processes with evolution of hydrogen comprising a metal substrate with a noble metal-based activation layer and two protective layers, one interposed between the activation layer and the substrate and one external, containing an electroless-depositable alloy of a metal comprising one of nickel, cobalt and iron with a non-metal selected from phosphorus and boron, with the optional addition of a transition element selected between tungsten and rhenium.03-15-2012
20140374249ANODE FOR OXYGEN GENERATION AND MANUFACTURING METHOD FOR THE SAME - The present invention aims to provide an anode for oxygen generation and a manufacturing method for the same used for industrial electrolyses including manufacturing of electrolytic metal foils such as electrolytic copper foil, aluminum liquid contact and continuously electrogalvanized steel plate, and metal extraction. The present invention features an anode for oxygen generation and a manufacturing method for the same comprising a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate wherein the coating is baked in a high temperature region of 410° C.-450° C. in an oxidation atmosphere to form the catalyst layer co-existing amorphous and crystalline iridium oxide and the catalyst layer co-existing the amorphous and crystalline iridium oxide is post-baked in a further high temperature region of 520° C.-560° C. in an oxidation atmosphere to crystallize almost all amount of iridium oxide in the catalyst layer.12-25-2014
204290090 Plural metal oxides containing 3
20080230380ELECTRODE FOR GENERATION OF HYDROGEN - The present invention provides an electrode for generation of hydrogen comprising: a conductive substrate; a catalytic layer formed on the conductive substrate and containing at least one platinum group metal selected from the group consisting of Pt, Ir, Ru, Pd and Rh; and a hydrogen adsorption layer formed on the catalytic layer. The present invention also provides an electrode for generation of hydrogen comprising: a conductive substrate, a catalytic layer formed on the conductive substrate and containing: at least one platinum group metal selected from the group consisting of Pt, Ir, Ru, Pd and Rh and/or at least one oxide of said platinum group metals; and at least one metal selected from the group consisting of lanthanum series metals, valve metals, iron series metals and silver and/or at least one oxide of said metals; and a hydrogen adsorption layer formed on the catalytic layer.09-25-2008
20130334037ELECTRODE FOR ELECTROLYSIS, ELECTROLYTIC CELL AND PRODUCTION METHOD FOR ELECTRODE FOR ELECTROLYSIS - An electrode for electrolysis includes a conductive substrate, a first layer formed on the conductive substrate, and a second layer formed on the first layer. The first layer contains at least one oxide selected from the group consisting of ruthenium oxide, iridium oxide, and titanium oxide. The second layer contains an alloy of platinum and palladium. The electrode for electrolysis shows low overvoltage and has excellent durability over a long period.12-19-2013
20140231249CHLORINE EVOLUTION ANODE - Provided is a chlorine evolution anode in which a main reaction of the anode is chlorine evolution, and the chlorine evolution anode which is low in potential of the anode for chlorine evolution, thereby being able to decrease an electrolytic voltage and lower an electric energy consumption rate. The chlorine evolution anode of the present invention is a chlorine evolution anode in which chlorine evolution from an aqueous solution is a main reaction of the anode and also in which a catalytic layer containing amorphous ruthenium oxide and amorphous tantalum oxide is formed on a conductive substrate.08-21-2014
204290100 Rare earth metal (i.e., Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu) or compound containing 3
20120305389ACTIVATED CATHODE FOR HYDROGEN EVOLUTION - The present invention aims to provide an activated cathode enabling a long-time stable operation with hydrogen overvoltage maintained at a low value, keeping a high remaining rate of the catalyst element after a cease of operation for a short-circuiting and after an electrolysis operation at a high current density, restricting catalyst loss to a little, and having a strong resistance to contamination caused by electrolyte impurity elements.12-06-2012
20120312683Electrode for Electrochemical Processes and Method for Obtaining the Same - An electrode suitable for use as hydrogen-evolving cathode in electrolytic processes is obtained by thermal decomposition of a precursor consisting of an acetic solution of nitrates of ruthenium, and optionally of rare earths. The electrode displays a low cathodic hydrogen evolution overpotential, an improved tolerance to current reversal phenomena and a high duration in industrial operating conditions.12-13-2012
20150083585Molybdenum and Tungsten Nanostructures and Methods for Making and Using Same - The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catalysts for hydrogen evolution reactions.03-26-2015
204290110 Organic compound containing 2
20100096259POLYMER MEMBRANES FOR CONTINUOUS ANALYTE SENSORS - Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the device has a sensing mechanism and a sensing membrane that includes at least one surface-active group-containing polymer and that is located over the sensing mechanism. The sensing membrane may have a bioprotective layer configured to substantially block the effect and/or influence of non-constant noise-causing species.04-22-2010
20150114834SURFACE MODIFIED ELECTRODES FOR ELECTROCHEMICAL SYNGAS PRODUCTION - An electrode for electrochemical reduction of carbon dioxide and water forming carbon monoxide and hydrogen. The electrode includes a metal substrate. A self-assembled monolayer is bonded to the metal substrate. A selectivity of reaction products of carbon monoxide and hydrogen produced by the electrode is regulated relative to a bare metal substrate.04-30-2015
204290120 Refractory metal (i.e., Ti, V, Cr, Zr, Nb or Cb, Mo, Hf, Ta, or W) or compound containing 15
20080230381SYSTEM FOR THE ELECTROLYTIC PRODUCTION OF SODIUM CHLORATE - A system for the electrolytic production of sodium chlorate having a sodium chloride brine buffered with phosphate and having a reduced or zero chromium content is disclosed. The system comprises electrolytic cells of the undivided type with intercalated cathodes and anodes. The cathodes can comprise steel perforated sheets activated with a Fe—Mo alloy coating.09-25-2008
20090008244COMPOSITE PARTICLES FOR AN ELECTRODE, PRODUCTION PROCESS THEREOF AND ELECTROCHEMICAL DEVICE - Composite particles for an electrode comprising LiVOPO01-08-2009
20100044219Smooth Surface Morphology Chlorate Anode Coating - The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably ruthenium, titanium and tin or antimony oxides. The coating uses water as a solvent that provides for a smoother surface than alcohol based solvents. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell and in particular a cell for the electrolysis of aqueous chlor-alkali solutions.02-25-2010
20110024289ELECTRODE AND ELECTRODE COATING - The invention describes an electrode and an electrode coating which are based on a catalyst containing finely divided carbon modifications and noble metal (oxide)s.02-03-2011
20110147205METHOD AND SYSTEM FOR PRODUCING ELECTROCATALYTIC COATINGS AND ELECTRODES - A method for producing nanostructured coatings on a substrate, comprising: preparing a nanocrystalline powder of a powder size comprised between 1 and 60 μm; and combining cleaning the surface of the substrate and cold spraying the nanocrystalline powder on the surface of the substrate, and a system for producing nanocrystalline coatings on a substrate, comprising a spray head, a cleaning head and a handling system monitoring the spray head and the cleaning head relative to the substrate to be coated, the spray head being a first cold spray head, the first cold spray head depositing on the substrate at least one nanocrystalline powder, the cleaning head optimizing the surface being coated with the at least one layer of nanocrystalline powder.06-23-2011
20110168550GRADED ELECTRODE TECHNOLOGIES FOR HIGH ENERGY LITHIUM-ION BATTERIES - Embodiments described herein provide methods and systems for manufacturing faster charging, higher capacity energy storage devices that are smaller, lighter, and can be more cost effectively manufactured at a higher production rate. In one embodiment, a graded cathode structure is provided. The graded cathode structure comprises a conductive substrate, a first porous layer comprising a first cathodically active material having a first porosity formed on the conductive substrate, and a second porous layer comprising a second cathodically active material having a second porosity formed on the first porous layer. In certain embodiments, the first porosity is greater than the second porosity. In certain embodiments, the first porosity is less than the second porosity.07-14-2011
20130192985ELECTRODE CATALYST - An electrode catalyst, including: a metal compound which contains an oxygen atom and at least one metal element selected from a group consisting of Group 4 elements and Group 5 elements in the long-form periodic table, and a carbonaceous material which covers at least part of the metal compound; wherein an oxygen deficiency index, which is represented as an inverse number of a peak value of a first nearest neighbor element in a radial distribution function obtained by Fourier-transforming an EXAFS oscillation in EXAFS measurement of the metal element, is 0.125 to 0.170; and a crystallinity index, which is represented as a peak value of a second nearest neighbor element in the radial distribution function, is 4.5 to 8.0.08-01-2013
20140202850PHOTOELECTRODE FOR SOLAR WATER OXIDATION - This disclosure provides systems, methods, and apparatus related to photoelectrodes. In one aspect, a photoelectrode may include a substrate including an electrically conductive surface and at least one nanostructure in electrical contact with the surface of the substrate. The nanostructure may include an impurity. The impurity may impart a light-absorbing characteristic to the nanostructure.07-24-2014
20150075978HIGH-LOAD DURABLE ANODE FOR OXYGEN GENERATION AND MANUFACTURING METHOD FOR THE SAME - The present invention aims to provide a high-load durable anode for oxygen generation and a manufacturing method for the same used for industrial electrolyses including manufacturing of electrolytic metal foils such as electrolytic copper foil, aluminum liquid contact and continuously electrogalvanized steel plate, and metal extraction, having superior durability under high-load electrolysis conditions. The present invention features an anode for oxygen generation and a manufacturing method for the same comprising a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate wherein the amount of coating of iridium per time for the catalyst layer is 2 g/m03-19-2015
20150376804Diamond Coated Electrodes for Electrochemical Processing and Applications Thereof - An electrode for an ozone generator or chlorine generator includes an electrically conductive substrate, a doped-Si layer disposed over the conductive substrate, and a boron-doped diamond (BDD) layer disposed over the doped-silicon layer. The doped-silicon layer defines a discrete architecture that maintains adhesion throughout a high temperature CVD boron-doped diamond process. Another electrode having a PVD nitrogen-doped diamond (ta-C:N) layer disposed over a conductive substrate is also provided.12-31-2015
204290130 Surface layer contains electrolytically exposed refractory metal or compound 5
20080237036Method for Forming an Electrocatalytic Surface on an Electrode and the Electrode - The invention relates to a method of forming an electrocatalytic surface on an electrode in a simple way, in particular on a lead anode used in the electrolytic recovery of metals. The catalytic coating is formed by a spraying method which does not essentially alter the characteristics of the coating powder during spraying. Transition metal oxides are used as the coating material. After the spray coating the electrode is ready for use without further treatment. The invention also relates to an electrode onto which an electrocatalytic surface is formed.10-02-2008
20100096260WATER CHLORINATOR HAVING DUAL FUNCTIONING ELECTRODES - A water chlorinator includes an aqueous chloride ion source; and a pair of dual functional electrodes configured to electrolyze the aqueous chloride ion source, each one of the pair of dual functional electrodes comprising a titanium substrate and a mixed metal oxide coating deposited thereon and consisting essentially of ruthenium oxide and titanium oxide having a molar ratio of 5:95 to 25:75, respectively.04-22-2010
20130068613AMORPHOUS TRANSITION METAL SULPHIDE FILMS OR SOLIDS AS EFFICIENT ELECTROCATALYSTS FOR HYDROGEN PRODUCTION FROM WATER OR AQUEOUS SOLUTIONS - The present invention relates to amorphous transition metal sulphides as electrocatalysts for hydrogen production from water or aqueous solutions and use thereof in electrodes and electrolysers.03-21-2013
20140353147ELECTRODE FOR USE WITH MANUFACTURING APPARATUS - An electrode for use with a manufacturing apparatus to deposit a material onto a carrier body with the carrier body having a first end and a second end spaced from each other with a socket disposed at each end of the carrier body. The electrode includes a shaft having a first end and a second end. The electrode also includes a head disposed on one of the ends of the shaft for coupling with the socket. The shaft and the head have an exterior surface having a contact region adapted to contact the socket. The electrode further includes an exterior surface and an exterior coating disposed on the exterior surface outside of the contact region, the exterior coating having an electrical conductivity of at least 9×106 Siemens/meter and corrosion resistance higher than silver in a galvanic series based upon room temperature sea water as an electrolyte.12-04-2014
20150122639Chemically Passivated Zinc Oxide Photoelectrode for Photoelectrochemical Water Splitting - A chemically passivated photoelectrode, having a conductive substrate, a layer of conductive oxide, preferably zinc oxide (ZnO), over the conductive substrate, and an ultrathin layer of a chemically inert semiconductor material coating the conductive oxide layer, is disclosed. The ultrathin layer of chemically inert semiconductor material, which may be less than 5 nm thick, increases the efficiency of water splitting through passivation of surface charge traps and chemical stability in harsh environments, as opposed to being photoactive. A method of manufacture and a solar cell having the photoelectrode are also disclosed.05-07-2015
204290140 Noble metal (i.e., Ru, Rh, Pd, Os, Ir, Pt, Ag, or Au) or compound containing 9
20090194411Cathode For Electrolytic Processes - The invention relates to a cathode for electrolytic processes, particularly suitable for hydrogen evolution in chlor-alkali electrolysis, consisting of a nickel substrate provided with a coating comprising a protective zone containing palladium and a physically distinct catalytic activation containing platinum or ruthenium optionally mixed with a highly oxidising metal oxide, preferably chromium or praseodymium oxide.08-06-2009
20100126851Electrode for electrochemical processes and method for producing the same - An anode provided with an electrocatalytic coating comprising tin, preferably tetravalent and in form of mixed oxide, prepared by the method for the manufacturing of an electrode, comprising applying a solution of a precursor for the pyrolytic formation of a tin-containing coating to a substrate of a valve metal, followed by the execution of thermal treatment, wherein the precursor solution comprises stannic hydroxychioride and a method of preparing the same.05-27-2010
20100282602ELECTRODE MATERIALS - An inert anode material for use in electrolytic processes comprises calcium ruthenate. [Note that the nominal formula for this compound is CaRuO3, although different stoichiometries may apply in practice].11-11-2010
20110290642ANODE FOR ELECTROLYSIS AND MANUFACTURING METHOD THEREOF - Subject The present invention aims to provide an anode for electrolysis by an ion exchange membrane process and the manufacturing method thereof which can show a lower concentration of by-product oxygen gas in chlorine gas and a lower overvoltage stably for a long time, compared with conventional anodes.12-01-2011
20120205240PROCESS FOR THE PRODUCTION OF GRAPHITE ELECTRODES FOR ELECTROLYTIC PROCESSES - A process is described for the production of graphite electrodes coated predominantly with noble metal for electrolytic processes, especially for the electrolysis of hydrochloric acid, wherein the surface of a graphite electrode is coated with an aqueous solution of a noble metal compound and then tempered at 150 to 650° C. in the presence of reducing and/or extensively oxygen-free gases.08-16-2012
20130175165ELECTROLYTIC ELECTRODE, ANODE FOR ELECTROLYTIC PRODUCTION OF OZONE, ANODE FOR ELECTROLYTIC PRODUCTION OF PERSULFURIC ACID AND ANODE FOR ELECTROLYTIC OXIDATION OF CHROMIUM - An electrolytic electrode includes an electrode surface layer formed by a high-temperature heat treatment under a low oxygen partial pressure of 100 Pa or less and includes a valve metal oxide film, the electrode surface layer having, just beneath, a layer which includes a valve metal and a noble metal excluding silver and the noble metal is precipitated and dispersed in a crystal grain boundary of the valve metal, wherein a crystal of the valve metal in a range of down to 30 μm in a vertical depth direction from the electrode surface is a crystal grain being elongated in a vertical cross-section from the electrode surface and a content of the noble metal in a range of down to 10 μm in the vertical depth direction from the electrode surface is 5 at % or less.07-11-2013
20130264198Synthesis of Nanoparticles Using Ethanol - The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a “green” chemistry method.10-10-2013
20140008215ELECTRODE FOR ELECTROLYTIC PROCESSES AND METHOD OF MANUFACTURING THEREOF - The invention relates to an electrode for electrolytic processes, particularly to a cathode suitable for hydrogen evolution in an industrial electrolysis process comprising a metal substrate coated with an external catalytic layer containing crystalline ruthenium oxide having a highly ordered rutile-type structure with Ru Ru and Ru O bond length characterised by a Debye-Waller factor lower than a critical value. The catalytic outer layer may contain rare earth oxides, such as praseodymium. The electrode may also comprise an internal catalytic thin layer platinum-based, which gives an enhanced protection against accidental current reversal events.01-09-2014
20140353148ANODE FOR OXYGEN GENERATION AND MANUFACTURING METHOD FOR THE SAME - The present invention aims to provide an anode for oxygen generation and a manufacturing method for the same used for industrial electrolyses including manufacturing of electrolytic metal foils such as electrolytic copper foil, aluminum liquid contact and continuously electrogalvanized steel plate, and metal extraction. The present invention features an anode for oxygen generation and a manufacturing method for the same comprising a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate wherein the coating is baked in a low temperature region of 370° C.-400° C. in an oxidation atmosphere to form the catalyst layer containing amorphous iridium oxide and the catalyst layer containing amorphous iridium oxide is post-baked in a further high temperature region of 520° C.-600° C. in an oxidation atmosphere to crystallize almost all amount of iridium oxide in the catalyst layer.12-04-2014
204290150 Free carbon containing 5
20090211901METHODS FOR PREPARING CNT FILM, CNT FILM WITH A SANDWICH STRUCTURE, AN ANODE INCLUDING THE CNT FILM AND AN ORGANIC LIGHT-EMITTING DIODES INCLUDING THE ANODE AND CNT DEVICE - Methods for preparing flexible transparent conducting carbon nanotube (CNT) films, the CNT film prepared from said methods, a method of treating CNT film by using thionyl bromide (SOBr08-27-2009
20100038238ELECTRODE FOR ELECTROLYSIS - The embodiments of the invention relate to an electrode for electrolysis comprising an electrode substrate and a coating of the electrode substrate with a polycrystalline diamond material, that the electrode substrate consists of a base body of carbon material and at least one contact layer of the electrode substrate carrying the coating consists of a non-metallic, electrically conductive material.02-18-2010
20100252425CARBONACEOUS SUBSTRATE AND ELECTRODE FOR FLUORINE-PRODUCING ELECTROLYSIS - A carbonaceous substrate of the present invention is such that an X-ray diffraction pattern thereof is a complex profile and includes at least two (002) diffraction lines; and the substrates contains crystallites with different interlayer spacings. Further, in the X-ray diffraction pattern, (002) diffraction lines between 2θ=10° and 2θ=30° have an asymmetric shape; and the X-ray diffraction pattern includes at least two pattern components which are a diffraction line whose center is at 2θ=26° and a diffraction line whose center is at a lower angle than 2θ=26°. Further, the carbonaceous substrate contains crystals wherein the periodic distance d10-07-2010
20110247929DIAMOND ELECTRODE AND METHOD FOR MANUFACTURING DIAMOND ELECTRODE - A diamond electrode having an oxidation resistant diamond film which will not separate from the electrode during electrolysis with highly oxidizing materials. The thickness of the diamond film is 20 pm or more and the diamond film should preferably cover opposite side surfaces of a substrate in such a manner as to also cover end surfaces 10-13-2011
20150345011DIAMOND ELECTRODE AND METHOD OF MANUFACTURING THE SAME - Disclosed are a method of manufacturing a diamond electrode by a chemical vapor deposition (CVD) process, and a diamond electrode manufactured by the method. The method of manufacturing the diamond electrode includes: introducing a carbon source gas to form niobium carbide (NbC) on a niobium substrate, immediately before depositing an electrically conductive diamond layer on the substrate by a hot-filament chemical vapor deposition (HFCVD) process; and depositing electrically conductive diamond layers on the substrate by two or more separate processes. Accordingly, a pinhole present during deposition of the electrically conductive diamond layer is filled such that the contact between an electrolyte and the substrate in an electrolytic environment will be minimized so as to retard the corrosion of the substrate, thereby providing a diamond electrode having a long life span.12-03-2015

Patent applications in class Laminated or coated (i.e., composite having two or more layers)

Patent applications in all subclasses Laminated or coated (i.e., composite having two or more layers)

Website © 2025 Advameg, Inc.