Class / Patent application number | Description | Number of patent applications / Date published |
201002000 | WITH CLEANING OF APPARATUS | 15 |
20090114519 | Process and Equipment for the Treatment of Waste Materials - A chamber for treating waste material includes a substantially closed chamber which is horizontally elongate with a conveyor provided within the chamber oriented generally horizontally and defining an upper portion and a lower portion with a series of paddles arranged to move material along the upper portion of the conveyor. A material supporting surface formed of ceramic material is provided between the upper portion and the lower portion of the conveyor. The material supporting surface is generally U-shaped and forms a channel through which the paddles move along the upper portion of the conveyor. The material supporting surface is carried by a plurality of metal horizontal support members which are cooled by a fluid. The paddles are asymmetrically oriented with respect to the conveyor. | 05-07-2009 |
20100065410 | HIGH TEMPERATURE SEPARABLE CONTINUOUS RESIDUE DISCHARGING SYSTEM AND METHOD OF USING THE SAME - Presented in this application is a simply operated, continuous residue discharging system. The system includes two sub-systems which convey residue from a reactor, through a closed residue discharging channel, to a residue storage tank. Also disclosed is a method of using the high temperature, separable, continuous residue discharging system and a kit including components for a continuous residue discharging system. | 03-18-2010 |
20100282587 | APPARATUS AND METHOD FOR PYROLYSIS OF ORGANIC WASTE - A gasification reactor includes a wiper system including at least one wiper blade operable to wipe an interior surface of the reactor. A condenser unit of the gasification reactor includes a scraper system including at least one scraper segment operable to scrape an interior surface of the condenser unit. | 11-11-2010 |
20110024280 | METHODS AND APPARATUS FOR PYROLYZING MATERIAL - Methods and systems for substantially continuously treating comminuted material containing carbon and hydrogen, for example, used tires, are provided. The methods include the steps of introducing the tire material to an elongated chamber, transferring the tire material through the elongated chamber, heating the tire material to a temperature sufficient to pyrolyze the material to produce a gaseous stream; discharging the gaseous stream from the chamber, and cooling at least some of the gaseous stream to liquefy components of the stream. The transfer may be effected by a flexible, center-less screw conveyor to minimize material buildup in the vessel. The cooling of the gaseous stream may be practiced by reverse condensation. One or more re-usable fuel streams are may be provided. | 02-03-2011 |
20110089013 | Apparatus of produced water treatment, system and method of using the apparatus, and method of water reuse by using the same - An apparatus of produced water treatment, to be adopted in an in-situ recovery method of producing bitumen from oil sand, the apparatus capable of removing the oil from produced water, the produced water of being left by separating the bitumen from bitumen-mixed fluid having been recovered from the oil sand, the apparatus having: a vessel for receiving the produced water; a submerge type filtration membrane module, installed in the vessel, for filtering the produced water in the condition of the membrane being submerged in the produced water; and a bubble generator for generating bubbles to be forwarded toward the submerged filtration membrane in the produced water. | 04-21-2011 |
20110303524 | Microwave apparatus and method of extracting essential oils, essence, and pigments with gas flow - Extraction apparatus and method for obtaining essential oils, essence, and pigments from odorous raw materials (e.g., plant materials and Chinese medicinal herbs) by microwave radiation heating have advantages of easy operation, higher extracting temperature and efficiency. The microwave chamber has a power level of 100 W to 1,500 W and its microwave radiation has a frequency at 915 MHz or 2,450 MHz. The extraction process can be performed without any preheating necessary. A condenser is operated at temperatures between −20° C. and 15° C. for cooling the gas flowing out of the extraction cartridges. Because both volatile fragrant compounds and pigments of the odorous raw materials can be extracted successfully by the top-down extraction fashion, the extracted essence is colorful. Since the extraction process by microwave heating is free from adding any organic solvent and/or any artificial chemical compound, the extraction apparatus and method are environmentally friendly. | 12-15-2011 |
20120125757 | PYROLYSER - The present invention provides a pyrolysis system comprising an entrained flow pyrolyser having an opening through which biomass can be added. The pyrolyser also has an inlet for hot exhaust gas, an outlet for pyrolysed biomass and an outlet for syngas. The system has a burner for producing hot exhaust gas and a conduit between the burner and the hot exhaust gas inlet. A syngas extraction means for extracting syngas from the pyrolyser. The syngas extraction means extracts syngas from the pyrolyser at a rate such that the internal pressure within the pyrolyser never exceeds the pressure external to the pyrolyser. | 05-24-2012 |
20120175236 | ORGANIC WASTE DECOMPOSITION SYSTEM AND METHOD WITH WATER RECYCLING - A system and a method of decomposing organic waste are provided. The system decomposes organic waste in a decomposition chamber without use of enzymes, additives, or microorganisms. In one embodiment, the system decomposes organic waste within 24 hours and deodorizes the odor of decomposing organic waste during decomposition process. The system provides sufficient heat and operating conditions to evaporate moisture from the organic waste without burning the organic waste. The byproduct of the organic waste after decomposition process by the system is substantially homogeneous material that is reduced in volume compared to the organic waste. In one embodiment, the system reuses or recycles water and heat used in the system for different processes in the system. The system includes a blower that provides flow of the moisture inside the system. | 07-12-2012 |
20120205228 | BIOMASS FRACTIONING PROCESS - A biomass fractionator and method are described for inputting ground biomass and outputting several vapor streams of bio-intermediate compounds along with syngas and biochar. In one embodiment, a method for biomass fractioning, comprises dispensing biomass into thin sheets of ground biomass; subjecting the thin sheets to ramps of temperature; and selectively collecting various groups of compounds as they are released from the thin sheets. | 08-16-2012 |
20120261244 | METHOD OF REDUCING NITROGEN OXIDES FROM COKE-OVEN FLUE GAS - The invention relates to a method for reducing nitrogen oxides from the exhaust gas of a coke oven, which has a plurality of coking chambers and heating walls, arranged between the coking chambers, with heating flues ( | 10-18-2012 |
20130098751 | METHOD FOR THE TORREFACTION OF LIGNOCELLULOSIC MATERIAL - A method for torrefaction of lignocellulosic biomass comprising: continuously feeding the biomass to an upper inlet to the torrefaction reactor vessel such that the biomass material is deposited on an upper tray assembly of tray assemblies stacked vertically within the reactor; as the biomass moves over each tray assembly, heating and drying the biomass material with a non-oxidizing gas under a pressure of at least 3 bar gauge and at a temperature of at least 200° C.; cascading the biomass down through the trays by passing the biomass through an opening in each of the trays to deposit the biomass on the tray of the next lower tray assembly; discharging torrefied biomass from a lower outlet of the torrefaction reactor, and circulating gas extracted from the reactor vessel back to the reactor. | 04-25-2013 |
20130118884 | APPARATUS AND PROCESS FOR THE DISCHARGE OF QUENCHED OR UNQUENCHED COKE FROM A COKE QUENCHING CAR INTO A RECEIVING DEVICE - An apparatus for the discharge of quenched or unquenched coke from a coke quenching car into a receiving device, providing that there is an extension of the pusher machine beside at least one coke-oven chamber, which is arranged in one line with the coke-oven chambers, and which is to be operated by the pusher machine, and that there is a receiving device behind the quenching car as seen from the coke-oven battery into which the coke can be pushed from the quenching car by the extension, the receiving device preferably being a wharf. A process for the discharge of the hot coke from a coke quenching car into a receiving device is also disclosed. Capacity bottlenecks of the quenching equipment are compensated so that the coke need not stay in the coke-oven chamber after the end of the coking process, or disturbances of the quenching equipment can be compensated temporarily. | 05-16-2013 |
20140001026 | METHODS AND APPARATUSES FOR THERMALLY CONVERTING BIOMASS | 01-02-2014 |
20140102874 | Method of Flushing Pyrolysis Reactor - The present techniques provide a pyrolysis process that is reduced in coke and/or tar formation relative to comparable processes. A flushing fluid is applied or injected directly into a pyrolysis reactor to reduce high levels of coke and tar that can accumulate within the pyrolysis reactor during pyrolysis of the feed. | 04-17-2014 |
20150122628 | METHODS FOR REDUCING SURFACE FOULING IN FUEL PRODUCTION SYSTEMS - Methods for preventing or reducing fouling of equipment having a metal surface that contacts a reaction byproduct in a fuel production system are provided. The method may include treating the metal surface in the fuel production system by contacting a fouling inhibitor with the metal surface. The fouling inhibitor includes a bicyclic organic compound with an aromatic ring and a heterocyclic ring, and is delivered to the metal surface of the system in sufficient amount and for sufficient time to reduce a fouling deposit on at least a portion of the metal surface. | 05-07-2015 |