Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With means on vehicle for generating power for the electric motor

Subclass of:

180 - Motor vehicles

180540100 - POWER

180650100 - Electric

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
180650300 With means on vehicle for generating power for the electric motor 31
20080202830VOLTAGE MEASUREMENT DEVICE AND ELECTRIC VEHICLE - To provide a voltage measurement device for measuring a battery voltage of a secondary battery formed by serially connecting a plurality of battery blocks, which is able to calculate the battery voltage in block units even though a potential detection line is disconnected. Specifically, when the voltage detection unit fails to measure the battery voltage of the measurement target battery block by selecting potential detection lines connected to both terminals of the measurement target battery block, the switch control unit selects the potential detection lines connected to both terminals of the battery block group including a serially connected plurality of battery blocks including the measurement target battery block, then measures the integrated voltage of the battery block group, and measures the battery voltage of the measurement target battery block based on the measured integrated voltage.08-28-2008
20080202831POWER GENERATOR USING TRACTION DRIVE ELECTRONICS OF A VEHICLE - A system and for generating power associated with a hybrid vehicle or electrically propelled vehicle comprises a mode selector for selecting at least one of an operational mode and a power generation mode. A controller activates one or more switches to disconnect an inverter output from a drive electrical path to a drive motor and to connect the inverter output to a power generation path if the vehicle is in the power generation mode. An inverter inverts a direct voltage signal to an alternating current signal with a desired frequency in the power generation path. A transformer increases a voltage level of the alternating current signal to a desired voltage level.08-28-2008
20080217080NOISE-COMFORT FUNCTION FOR COOLING SYSTEMS WITH PROPORTIONAL VARIABLE SPEED FANS - A method for operating a cooling system for a fuel cell stack in a vehicle is provided. The method includes the steps of: determining a fan request for a variable speed fan disposed in the cooling system; employing a noise-comfort function to select a fan comfort request; and adjusting a speed of the variable speed fan in response to the fan request; wherein a noise emission by the variable speed fan is militated against. A cooling system for a fuel cell stack in a vehicle that employs the noise-comfort function is also provided.09-11-2008
20080230288Fuel Cell Electric Vehicle - A fuel cell electric vehicle includes a driving motor, a fuel cell and first and second supply/discharge manifolds. The driving motor is disposed between a pair of wheels. The fuel cell is disposed above the driving motor and has a plurality of unit cells stacked in a vertical direction of a vehicle. The fuel cell includes a plurality of through-manifolds configured and arranged to distribute a fuel gas, an oxidizing gas and a coolant to the unit cells. The first and second supply/discharge manifolds are disposed adjacent to first and second lateral end portions of the driving motor, respectively, with respect to a lateral direction of the vehicle. The first and second supply/discharge manifolds include a plurality of fluid connection ports for transporting the fuel gas, the oxidizing gas and the coolant at positions that substantially overlap with positions of the through-manifolds.09-25-2008
20080236914SADDLE RIDE, FUEL CELL POWERED VEHICLE - A saddle ride vehicle includes a fuel cell formed in a rectangular, parallelepiped shape disposed below a vehicle seat. The fuel cell is inclined toward a vehicle rear. A pivot shaft is disposed in a range X defined forwardly of a vertex P of a side-view rectangle of the fuel cell, and defined rearwardly of a vertex Q of the side-view rectangle, and is disposed in a range Y defined below the vertex P and defined above the vertex Q. Foot rest parts are disposed between a steering handle and the seat. The fuel cell is disposed on the side of the foot rest parts, so that the center of gravity G10-02-2008
20080245588MOVING APPARATUS - To provide a fuel cell moving body that can extend travel distance by the battery when fuel cell failure has occurred. A fuel cell vehicle 10-09-2008
20080257621FUEL CELL VEHICLE SYSTEM - A fuel cell vehicle system includes: a propulsion motor capable of driving a vehicle; a fuel cell which generates electric power by supplying a reactant gas to give an electrochemical reaction; an energy storage device which is charged by a generated output of the fuel cell and regenerative electric power of the propulsion motor; an output control device which controls an output current of the fuel cell; and a control device which calculates the regenerative electric power which can be generated by a regenerative operation of the propulsion motor as well as a chargeable power which can be charged to the energy storage device, controls the output control device so that the output current of the fuel cell is restricted when the chargeable power is less than the regenerative electric power, and controls the output control device so that restriction on the output current of the fuel cell is canceled when the chargeable power is equal to or greater than the regenerative electric power.10-23-2008
20080277175Fuel Cell Hybrid-Electric Heavy-Duty Vehicle Drive System and Method - A system and a method that provides fuel cell and energy storage hybrid-electric propulsion and control for a heavy-duty vehicle over 10,000 pounds GVWR. Power output is supplied from a fuel cell system to a high-power intermediate DC bus through a fuel cell DC/DC converter. Power output is supplied from an energy storage system to the high-power intermediate DC bus through a separate energy storage fuel cell DC/DC converter. The received power is combined on the high-power intermediate DC bus to create a stable voltage. The stable voltage from the high-power intermediate DC bus is supplied to one or more electric motors/generators to accelerate the heavy duty vehicle.11-13-2008
20080283313FUEL CELL VEHICLE - A fuel cell vehicle is provided that can suppress uneven torque. The fuel cell vehicle 11-20-2008
20080289890WHEEL-DRIVEN BATTERY CHARGER - An improved battery charging system for use on a non-motorized, ground-supported wheeled vehicle such as a horse-drawn buggy, including a generator incorporated into the hub assembly of at least one wheel, a voltage control unit for controlling the voltage output of the generator over the full range or vehicle speeds, and a battery. The synchronous generator features rare earth metal permanent magnets arranged in a three-phase, outside rotor disposed within a wheel brake housing of a buggy wheel hub. The stator is situated on an axle. Voltage regulation includes active switching whereby generator output voltage is rectified during low vehicle speed operation and an increasing portion directed away from the battery as vehicle speed and thus generator output voltage increases to a level which could damage the connected battery.11-27-2008
20080302587FUEL CELL MODULE AND FUEL CELL MOTOR VEHICLE - A fuel cell module has a fuel cell that supplies a drive power to a vehicle, a case that covers the fuel cell, and a current breaker that is attached to the case. The current breaker is manually operable from outside the case, and is capable of interrupting an output of the fuel cell to outside the case. The current breaker interrupts current at the time of a manual operation, thereby securing safety from high voltage of the fuel cell module during a vehicle maintenance operation and the like.12-11-2008
20080308329FUEL CELL VEHICLE - A fuel cell vehicle capable of improving energy efficiency by reducing switching loss is provided. The fuel cell vehicle includes: a fuel cell that generates direct current power; inverters which respectively include switching elements and convert the direct current power generated by the fuel cell into alternating current power; a diode that prevents current from flowing from the inverters toward the fuel cell; a step up/down DC/DC converter that adjusts the voltage of the cathode side of the diode; a voltage control part that controls the step up/down DC/DC converter, thereby controlling current output from the fuel cell; and a stop and idle determination part that stops the supply of air to the fuel cell, thereby stopping idling of the fuel cell. The voltage control part reduces the voltage of the cathode side of the diode as the voltage of the fuel cell is reduced by activating the stop and idle determination part.12-18-2008
20080314660Detachable Fuel Cell Power Unit For Vehicle Applications - A detachable and portable fuel cell power unit (12-25-2008
20090000837SADDLE RIDING TYPE FUEL CELL VEHICLE - A saddle riding type fuel cell vehicle includes a fuel cell that generates power by a chemical reaction between a fuel gas and a reactive gas with radiators that cool cooling water of the fuel cell. The radiators are adjacently arranged in right and left sides of the fuel cell in a vehicle width direction. Each outer end surface of the radiators, outside in a vehicle width direction, is positioned closer to the front side of a vehicle body than each inner end surface inside in the vehicle width direction. Thus, each plane portion, which receives an air flow, is inclined to the inner side of the vehicle body, and air courses, which allow an air flow to be passed to the rear side of the vehicle body, are each formed between the inner end surface of each of the radiators and each side surface of the fuel cell.01-01-2009
20090008166ELECTRIC SYSTEM FOR FUEL CELL, FUEL CELL VEHICLE, AND METHOD OF SUPPLYING ELECTRIC POWER - An electric system has a fuel cell for generating electric power by being supplied with a reactive gas, an electric storage device having a voltage lower than a voltage output from the fuel cell, a first power supply line connected to the fuel cell, a second power supply line connected to the electric storage device, a first electric accessory serving as at least part of a fuel cell accessory for operating the fuel cell, a first DC-to-DC converter for performing bidirectional voltage conversion between the first power supply line and the second power supply line and a second DC-to-DC converter for lowering a voltage for supply electric power to the first electric accessory.01-08-2009
20090008167FUEL CELL VEHICLE, AND METHOD OF SUPPLYING ELECTRIC POWER - A fuel cell vehicle has a fuel cell for generating electric power by being supplied with a reactive gas, an electric storage device, a first power supply line connected to the fuel cell, a second power supply line connected to the electric storage device, and a main DC-to-DC converter for performing bidirectional voltage conversion between the first power supply line and the second power supply line, an electric motor to propel the vehicle and a first electric accessory connected to the first power supply line, a second electric accessory having at least a portion connected to the second power supply line.01-08-2009
20090020347SADDLE SEAT TYPE FUEL-CELL ELECTRIC VEHICLE - A saddle seat type fuel-cell electric vehicle includes a body frame having a pair of right and left main frames connected at their front ends to a head pipe and extending downward therefrom and a pair of right and left under frames connected at their front ends to the head pipe and extending downward therefrom along the right and left main frames on the lower side thereof. A pair of hydrogen cylinders extend substantially vertically along the body frame between the front side of the head pipe and the front side of the front end portion of the footrest so as to interpose the body frame in the lateral direction of the vehicle. A fuel supply unit is provided in a space surrounded by the main frames and the under frames with the hydrogen cylinders being surrounded by a guard pipe connected to the main frames.01-22-2009
20090020348SADDLE SEAT TYPE ELECTRIC VEHICLE - A saddle seat type fuel-cell electric vehicle includes a motor for driving rear wheels, a secondary battery for supplying electric power to the motor, a carrier for carrying luggage and a seat for supporting an operator, the carrier is located behind the seat and above the rear wheels. The secondary battery includes a plurality of cells each having an elongated boxlike shape, and it is stored in the internal space of the carrier, thereby increasing the flexibility of the layout of the vehicle body. Spacings functioning as air passages are defined between the inner wall of the carrier and the secondary battery. The carrier is formed with air inlet openings for introducing an air flow into the internal space and an air outlet opening for discharging the air flow out of the internal space. The plural cells are arranged adjacent to each other with given intervals on the same plane.01-22-2009
20090032318FUEL CELL VEHICLE - A high-pressure tank is disposed on a rear side of a vehicle, a fuel cell for consuming a fuel gas in the high-pressure tank is disposed on a front side of the vehicle, and a supply pipe for supplying the fuel gas to a fuel cell from the high-pressure tank is provided. The supply pipe is housed in a tunnel part formed in a shape projecting toward the vehicle interior side at the bottom face of the vehicle in a front-rear direction.02-05-2009
20090032319DOUBLE-ENDED INVERTER DRIVE SYSTEM FOR A FUEL CELL VEHICLE AND RELATED OPERATING METHOD - Systems and methods are provided for a double-ended inverter drive system for a fuel cell vehicle. An electric drive system for a vehicle comprises an electric motor configured to provide traction power to the vehicle. A first inverter is coupled to the electric motor, and is configured to provide alternating current to the electric motor. A fuel cell is coupled to the first inverter to provide power flow from the fuel cell to the electric motor. A second inverter is coupled to the electric motor, and is configured to provide alternating current to the electric motor. An energy source is coupled to the second inverter to provide power flow between the energy source and the electric motor. A controller is coupled to the first inverter and the second inverter, and is configured to provide a constant power from the fuel cell during operation of the electric motor.02-05-2009
20090044994FUEL CELL STACK FLOW DIVERSION - A fuel cell system has a compressor delivering compressed gas to a fuel cell stack and a control valve affecting the flow of compressed gas. A load dump condition is determined for the fuel cell stack. The flow through the compressor is increased and the additional flow diverted away from the fuel cell stack by the control valve to provide additional load for the fuel cell stack. The fuel cell stack may then be operated at a higher output power for the purpose of generating more waste heat to more rapidly warm itself.02-19-2009
180650400 Generating means is driven by a prime mover 10
20080196956HV Battery Cooling with Exhaust Flow of Fuel Cell Systems - A fuel cell system for a hybrid vehicle that includes a high voltage battery, where the system uses a cathode exhaust gas airflow from a fuel cell stack to draw air through a battery compartment in which the battery is mounted to provide battery cooling. An air intake line is in fluid communication with the passenger compartment of the vehicle and the battery compartment. An ejector line is in fluid communication with the battery compartment and the cathode exhaust gas pipe. The flow of the cathode exhaust gas around the injector pipe creates a low pressure area, which draws air through the battery compartment from the passenger compartment. In one embodiment, a compressor that provides the cathode inlet air to the fuel cell stack is used at low stack output loads, such as during vehicle idle, to direct air through the cathode exhaust gas pipe, and cool the battery system under low load conditions.08-21-2008
20080223637Safe, Super-efficient, Four-wheeled Vehicle Employing Large Diameter Wheels with Continuous-Radius Tires, with Leaning Option - A “super fuel efficient”, safe, low-cost and yet high performance 4-wheeled vehicle is configured with motorcycle wheels and tires having continuous radius tires and of outside diameter (20-26 inches). A special configuration of the invention permits a 4-wheeled vehicle to naturally camber while engaging a corner, or while maneuvering on a slope. Integration of a “short-cycling”, low storage mass hybrid drivetrain into the vehicle, and further, an exhaust heat energy recovery system, secures the efficiency opportunity.09-18-2008
20080236915Hybrid drive train of a motor vehicle and method for controlling a hybrid drive train - A hybrid drive train includes an internal combustion engine, an electromagnetic transmission downstream of the internal combustion engine and an axle drive downstream of the electromagnetic transmission. The electromagnetic transmission includes a first and a second electric machine and a stator in common for the first and the second electric machine. The first electric machine has a drive rotor connected to an input shaft. The second electric machine has an output drive rotor connected to an output shaft. An effective transmission ratio can be set by an axial displacement of the stator in relation to the drive rotor and the output drive rotor. A driving battery is connected to a short-circuit winding of the stator via switchable lines and power electronics having an associated controllable DC-DC converter, so that a flow of energy between the first and second electric machines and the driving battery can be controlled.10-02-2008
20080236916Drive train for a motor vehicle and method for operating a drive train - In a drive train for a motor vehicle with an internal combustion engine and a serial hybrid drive and a method for operating a motor vehicle with such a drive train, wherein the driving performance is increased and the fuel consumption of the internal combustion engine is reduced, and the drive shaft of the internal combustion engine is connected to a first electrical machine, and a second electrical machine is connected to a drive wheel of the motor vehicle, an electrical energy accumulator to which electrical energy can be supplied by the first and second first electrical machines and which can supply electrical energy to the first and second electrical machine is provided together with a control unit for dividing the power between the electrical energy accumulator and the first electrical machine, the rotational speed (n) of the first electrical machine and the power of the internal combustion engine are controlled depending on vehicle operating conditions and energy accumulator states selectively for high fuel efficiency or low emissions.10-02-2008
20080236917Power plant - A power plant which is capable of improving the drive efficiency and the power generation efficiency thereof when the electric power is generated using the power of a driven part thereof. A power plant has an internal combustion engine having a crankshaft, and a rotary motor having a rotor. A planetary gear train includes a sun gear, a ring gear, and a carrier rotatably supporting a planetary gear in mesh with the sun gear and the ring gear. The sun gear and the ring gear are connected to drive wheels. The carrier is connected to the crankshaft. The rotor is connected between one of the sun gear and the ring gear and the drive wheels. A transmission is connected between the other of the gears and the drive wheels, for varying a speed of power of the engine and transmitting the power to the drive wheels.10-02-2008
20080257622Motor Vehicle Comprising a Solar Module - The invention relates to a mortor vehicle comprising an air-conditioning unit (10-23-2008
20080277176Power output apparatus, vehicle equipped with power output apparatus, and control method of power output apparatus - Upon incompletion of abnormality detection of an air-fuel ratio sensor provided in an exhaust pipe of an engine during operation of the engine (steps S11-13-2008
20080314661NEGATIVE DRIVELINE TORQUE CONTROL INCORPORATING TRANSMISSION STATE SELECTION FOR A HYBRID VEHICLE - In one embodiment, a hybrid propulsion system for a passenger vehicle is provided. The system comprises at least one drive wheel; a first motor coupled to the drive wheel; a second motor; a transmission including a first end coupled to the drive wheel and a second end coupled to the second motor; and a control system configured to control operation of the first and second motor to each provide vehicle braking torque, wherein transmission state is adjusted in response to an amount of braking torque provided by the first motor and an amount of braking torque provided by the second motor.12-25-2008
20090000838Electric Motor for a Motor Vehicle and Associated Assembly Method - This motor (01-01-2009
20090008168Vehicle, Driving Device And Control Method Thereof - When a gear of a transmission for transmitting torque of a motor to a drive shaft is shifted while an accelerator is off or an accelerator pedal is slightly stepped on, an upper limit rotation speed is set using a fluctuation rate of a value smaller than a value when the gear is not shifted, a target rotation speed of an engine is set using this upper limit rotation speed, and control is carried out so that an engine is operated at the target rotation speed. By this arrangement, when the accelerator pedal is stepped on and a large torque demand is demanded, rise of the engine rotation speed is restricted, a portion used for raising the rotation speed in power outputted from the engine is made smaller, and a larger power can be outputted to the drive shaft.01-08-2009

Patent applications in class With means on vehicle for generating power for the electric motor

Patent applications in all subclasses With means on vehicle for generating power for the electric motor

Website © 2025 Advameg, Inc.