Class / Patent application number | Description | Number of patent applications / Date published |
174126400 | Metal coated on insulation | 22 |
20080245550 | ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME - In conventional electronic components, having a substrate as a component of the structure has been an obstacle to an ultra-low profile design. To address the problem, the present invention provides an improved structure without a substrate. Internal electrode | 10-09-2008 |
20090120667 | Lead - A lead for transmitting an electrical signal within a gas turbine engine, from a node at a first part of the gas turbine engine having a first surface to a second part of the gas turbine engine having a second surface, wherein the first part and the second part are coupled at a compressed joint, wherein the lead comprises: a node on the first surface of the first part; a first interconnect, adhered to the first surface of the first part; and a second interconnect, adhered to the second surface of the second part, wherein the first interconnect and the second interconnect abut at the compressed joint to provide, by their contact, a continuous electrical connection from the node to the second part. | 05-14-2009 |
20090188697 | TRANSPARENT CONDUCTORS AND METHODS FOR FABRICATING TRANSPARENT CONDUCTORS - Transparent conductors with nanowires having silver oxide complexes and methods for fabricating such transparent conductors are provided. In one exemplary embodiment, a transparent conductor comprises a substrate and a transparent conductive coating disposed overlying the substrate. The coating comprises silver nanowires at least a portion of which has a silver oxide complex formed on or within surfaces thereof. | 07-30-2009 |
20090308636 | IN-SITU SILICON CAP FOR METAL GATE ELECTRODE - Structure and method of improving the performance of metal gate devices by depositing an in-situ silicon (Si) cap are disclosed. A wafer including a substrate and a dielectric layer is heated through a degas process, and then cooled to approximately room temperature. A metal layer is then deposited, and then an in-situ Si cap is deposited thereon. The Si cap is deposited without vacuum break, i.e., in the same mainframe or in the same chamber, as the heating, cooling and metal deposition processes. As such, the amount of oxygen available for interlayer oxide regrowth during subsequent processing is reduced as well as the amount oxygen trapped in the metal gate. | 12-17-2009 |
20100089614 | ELECTRIC CONTROL CABLE AND AN ASSOCIATED FABRICATION METHOD - The present invention relates to an electric control cable of the type comprising a core of polymer material and a plurality of copper strands extending in the longitudinal direction of said core, said copper strands being distributed uniformly and concentrically on the periphery of said core so as to penetrate only partially into said core, with each of them leaving a portion that is accessible from outside said periphery. According to the invention, said copper strands are embedded in part in the material forming the core and extend parallel to the longitudinal direction of said core. Advantage: fabrication is simplified and copper is saved, while still enabling easy access to the copper for subsequent crimping of the cable for connection purposes. | 04-15-2010 |
20100089615 | TRANSPARENT ELECTROCONDUCTIVE FILM AND PROCESS FOR PRODUCING THE SAME - In a transparent electroconductive film including a transparent substrate and a transparent electroconductive oxide layer disposed on the transparent substrate, when the transparent electroconductive oxide layer is composed of zinc oxide, the surface resistivity of the transparent electroconductive oxide layer increases with time and thus it has been difficult to obtain a transparent electroconductive film stable against an environmental variation. Consequently, hard carbon films are provided on the surfaces of a transparent electroconductive oxide layer including at least one layer and containing zinc oxide as a main component in “the order of transparent substrate-hard carbon film-transparent electroconductive oxide layer-hard carbon film” or “the order of hard carbon film-transparent substrate-transparent electroconductive oxide layer-hard carbon film”. Alternatively, an organosilicon compound covering layer is provided on a surface of the transparent electroconductive oxide layer. Thereby, the water contact angle can be 75 degrees or more, and an increase in the resistivity of the transparent electroconductive oxide layer can be suppressed. | 04-15-2010 |
20100089616 | STRETCHABLE CONDUCTOR AND METHOD FOR PRODUCING THE SAME - The present invention relates to a compliant deformable conductor and a method for producing the same, comprising a wire or a tube made of an electrically insulating material and one or more electrical leads applied on said wire or tube, wherein one or more of said leads comprise a plurality of islets of conductive material, forming an electrically conductive layer providing electrical conduction and/or electrical percolation. | 04-15-2010 |
20100230135 | Additive disk drive suspension manufacturing using tie layers for vias and product thereof - An additive process disk drive suspension interconnect, and method therefor is provided. The interconnect has a metal grounding layer of typically stainless steel or copper metallized stainless steel, a metal conductive layer and an insulative layer between the metal grounding layer and the conductive metal layer. A circuit component such as a slider is electrically connected to the conductive layer along a grounding path from the circuit component and the conductive layer to the metal grounding layer through an aperture in the insulative layer. For improved electrical connection a tie layer is provided through the insulative layer onto the grounding layer in bonding relation with the ground layer. A conductor is deposited onto both the conductive metal layer and the tie layer in conductive metal layer and tie layer bonding relation, and the circuit component is thus bonded to the grounding layer by the conductor. | 09-16-2010 |
20100294538 | Plastic Lead Frame with Reflection and Conduction Metal Layer and Fabrication Method of the Same - A plastic lead frame with reflection and conduction metal layer includes a base made of a metal catalyst containing or an organic substance containing plastic material, the base further includes a slanted reflection surface formed downwardly on top of the base; an insert slot continuously and staggeringly formed along the circumferential fringe of the base; a molded carrier made of non-metallic catalyst or organic substance containing plastic material accommodated in the insert slot; an interface layer formed on the surface of the base by chemical deposition; an insulation route formed on the surface of the base by ablating part of the interface layer with the laser beam radiation; and a metallic layer formed on the base by electroplating process thereby forming a plastic lead frame of excellent electrical conductivity and high light reflection property. | 11-25-2010 |
20100294539 | ELECTRICALLY CONDUCTIVE MICROPARTICLE, ANISOTROPIC ELECTRICALLY CONDUCTIVE MATERIAL, CONNECTION STRUCTURE, AND METHOD FOR PRODUCTION OF ELECTRICALLY CONDUCTIVE MICROPARTICLE - It is an object of the present invention to provide a conductive particle which has low initial connection resistance and which is hard to increase in connection resistance even when stored for a long period. | 11-25-2010 |
20100319962 | SELF-ALIGNED NANO-SCALE DEVICE WITH PARALLEL PLATE ELECTRODES - A contiguous deep trench includes a first trench portion having a constant width between a pair of first parallel sidewalls, second and third trench portions each having a greater width than the first trench portion and laterally connected to the first trench portion. A non-conformal deposition process is employed to form a conductive layer that has a tapered geometry within the contiguous deep trench portion such that the conductive layer is not present on bottom surfaces of the contiguous deep trench. A gap fill layer is formed to plug the space in the first trench portion. The conductive layer is patterned into two conductive plates each having a tapered vertical portion within the first trench portion. After removing remaining portions of the gap fill layer, a device is formed that has a small separation distance between the tapered vertical portions of the conductive plates. | 12-23-2010 |
20120073859 | POLYMER CORE WIRE - A wire capable of conducting electrical current has a polymer core and a coating layer surrounding the core. The coating layer, which may be, for example, gold or copper, conducts electrical current and the core provides strength so that the wire is able to withstand bending and breakage. Among other things, the polymer core wire is useful for connecting an integrated circuit to a lead frame or substrate. | 03-29-2012 |
20120097424 | METHOD FOR MANUFACTURIING TRANSPARENT ELECTRODE USING PRINT-BASED METAL WIRE AND TRANSPARENT ELECTRODE MANUFACTURED THEREBY - A method for manufacturing a transparent electrode using a print-based metal wire is provided, which enables the mass production of the transparent electrode as a substitute for ITO at low cost. The manufacturing method includes: the first step of forming a metal wire in a pattern set for a transparent substrate; and the second step of coating a solution type transparent electrode on the transparent substrate. | 04-26-2012 |
20120125660 | PROCESS FOR FORMING OPTICALLY CLEAR CONDUCTIVE METAL OR METAL ALLOY THIN FILMS AND FILMS MADE THEREFROM - A process of forming optically clear conductive metal or metal alloy thin films is provided that includes depositing the metal or metal alloy film on a polycrystalline seed layer that has been deposited directly on a nucleation layer of metal oxide comprising zinc oxide. Also conductive films made by this process are provided. In some embodiments, the metal alloy thin films include silver/gold alloys. | 05-24-2012 |
20120168201 | THIN METAL FILM ELECTRODE AND FABRICATING METHOD THEREOF - There are provided a method of fabricating a thin metal film electrode and a thin metal film electrode fabricated by the same. The method of fabricating a thin metal film electrode according to an embodiment of the present invention includes applying a metal paste including a metal powder and a dispersant to a substrate to form a thin metal film; and subjecting the thin metal film to reduction firing in an atmosphere containing an organic acid and an aqueous solution in a ratio ranging from 10:90 to 90:10. | 07-05-2012 |
20130043058 | ADHESIVE FILM AND FLAT CABLE - An adhesive film includes an insulation film, an adhesive layer formed on the insulation film and including a copolyamide resin being soluble in a solvent at a room temperature (25° C.) and having a melting point of not less than 100° C. and not more than 150° C., a halogen-free flame retardant at a rate of not less than 100 parts by mass and not more than 250 parts by mass relative to 100 parts by mass of the copolyamide resin, and a carbodiimide compound soluble in the solvent at the room temperature (25° C.), and a conductor adhesion layer laminated on the adhesive layer. | 02-21-2013 |
20130133925 | GRAPHENE TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME - Disclosed herein are a method for manufacturing a graphene transparent electrode and a graphene transparent electrode manufactured by the method. The method includes: providing a graphene oxide solution: forming a metal thin film on a glass substrate; coating the graphene oxide solution on the metal thin film, followed by drying; primarily reducing the thus obtained graphene oxide by using a reducing agent, to obtain reduced graphene oxide; secondarily reducing the reduced graphene oxide by heat treatment under the inert atmosphere, to form a reduced layer; compressing a transparent film on the reduced layer; and etching the metal film by an etching solution. The method enables a graphene transparent electrode having economical feasibility and excellent electric conductivity to be manufactured. | 05-30-2013 |
20130213690 | METHOD FOR MANUFACTURING ALUMINUM ELECTRODE USING SOLUTION PROCESS AND ALUMINUM ELECTRODE MANUFACTURES THEREBY - The present invention provides a method for manufacturing an aluminum electrode using a solution process and an aluminum electrode manufactured thereby. The manufacturing method includes the steps of: manufacturing an aluminum precursor solution for the solution processing using AlH | 08-22-2013 |
20130213691 | ELECTRONIC DEVICE - An anisotropic conductive film, the anisotropic conductive film including an insulating layer and a conductive layer laminated on the insulating layer, the conductive layer containing conductive particles, wherein after glass substrates are positioned to face each other on the upper and lower surface of the anisotropic conductive film and are pressed against the anisotropic conductive film at 3 MPa (based on the sample area) and 160° C. (based on the detection temperature of the anisotropic conductive film) for 5 sec, a ratio of the area of the insulating layer to that of the conductive layer is from about 1.3:1 to about 3.0:1. | 08-22-2013 |
20140102761 | MATERIAL FOR PROVIDING AN ELECTRICALLY CONDUCTING CONTACT LAYER, A CONTACT ELEMENT WITH SUCH LAYER, METHOD FOR PROVIDING THE CONTACT ELEMENT, AND USES OF THE MATERIAL - A material for providing an electrically conducting contact layer, the material comprising a base material being any one of Ag, Cu, Sn, Ni, a first metal salt of one thereof, or an alloy of one or more thereof. The material further comprises In within a range of 0.01 at. % to 10 at. %, Pd within a range of 0.01 at. % to 10 at. %, and, unless already the base material comprises Sn at a higher amount, Sn within a range of 0.01 at. % to 10 at. %. From such material, a contact layer ( | 04-17-2014 |
20140151085 | TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME - There is provided a transparent electrode comprising a supporting substrate, a first transparent electrically-conductive film provided on the supporting substrate, a transparent insulating film provided on the first transparent electrically-conductive film, and a second transparent electrically-conductive film provided on the transparent insulating film. In the transparent electrode of the present invention, all of the first transparent electrically-conductive film, the second transparent electrically-conductive film and the transparent insulating film provided therebetween comprise a metal compound, and the first transparent electrically-conductive film and the second transparent electrically-conductive film have a crystalline structure, whereas the transparent insulating film has an amorphous structure. | 06-05-2014 |
20140284078 | ELECTRODE LOOP STRUCTURE OF TOUCH PANEL - An electrode loop structure of a touch panel mainly extends from I-shaped electrode elements serving as a base, and utilizes the annular conducting chain and gradient chain regularly cascaded together. A discontinuous resistor chain is disposed between the conducting chain and the gradient chain, wherein the conducting chain changes, by adjusting the cascaded length of and the gaps between the electrode elements, the conductor area to generate the trend of voltage drop, so that the conducting chain has the voltage regulating and compensating properties. Meanwhile, the gradient chain may also make the gradient chain have the voltage distributing uniformity by adjusting the lengths of and the gaps between the electrode elements, so that the electrode loop is effectively distributed around the electroconductive substrate to form the homogenized electric field effect, thereby satisfying the narrow-edge design requirement. | 09-25-2014 |