Class / Patent application number | Description | Number of patent applications / Date published |
166313000 | Parallel string or multiple completion well | 34 |
20080210429 | System and method for stimulating multiple production zones in a wellbore - A system and method for selectively stimulating a plurality of producing zones of a wellbore in oil and gas wells, the system being cemented within the wellbore. The system includes a plurality of modules connected in a string wherein the modules can be selectively actuated to stimulate producing zones adjacent the modules. Each module includes a sleeve shiftable between a closed position and a treating position where a plurality of radial passageways are exposed to the central passageway of the assembly. The system includes a wiper plug that is adapted to pass through ball seats of various sizes in the plurality of modules and an acid solution pumped into the string to break down the cement at the producing zones. The system may include at least one natural rubber wiper ball to remove residual cement from the string. | 09-04-2008 |
20080210430 | WELLBORE SYSTEM FOR PRODUCING FLUID - A well system for producing fluid from an earth formation. A primary wellbore section produces the fluid from the well system to the surface. The primary wellbore section includes a cylindrical member having a number of apertures. At least one flanking wellbore runs substantially alongside the primary wellbore section. The flanking wellbore is in fluid communication with the apertures on the primary wellbore section through the porous earth formation. At least one lateral wellbore section joins the flanking wellbore section. Formation fluid flows into the lateral wellbore sections and then into the flanking wellbore section. The fluid is then transmitted from the flanking wellbore, through the porous earth formation, and is received by the apertures in the primary wellbore section. The fluid flows through the primary wellbore section to the surface. | 09-04-2008 |
20080314596 | APPARATUS AND METHOD FOR WELLBORE ISOLATION - An apparatus for isolating a selected leg of a wellbore from the remainder of the wellbore includes a packer positionable in the selected leg of the wellbore, a tube extending through the packer from an uphole side of the packer to a downhole side of the packer to permit a fluid flow communication to the selected leg of the wellbore past the packer and a valve positioned in the tube to control fluid flow through the tube. In a method for isolating a selected leg of a wellbore, the apparatus is positioned in the selected wellbore leg and the packer set to permit fluid flow communication past the apparatus only through the tube and the valve of the apparatus. | 12-25-2008 |
20090056947 | SYSTEM AND METHOD FOR ENGAGING COMPLETIONS IN A WELLBORE - A technique is provided for engaging and disengaging an upper completion with a lower completion positioned in a wellbore. The upper completion comprises an upper communication line, and the lower completion comprises a lower communication line. The upper completion is mechanically latched with the lower completion and the communication lines are coupled in a manner that enables selective engagement and disengagement. A communication line union is used to connect the upper communication line and the lower communication line in a plurality of rotational orientations of the upper completion relative to the lower completion. | 03-05-2009 |
20090188671 | JUNCTION HAVING IMPROVED FORMATION COLLAPSE RESISTANCE AND METHOD - A junction includes a borehole casing having a window therein; a diverter disposed within the casing and aligned and oriented with the window, the diverter having at least one profile along a longitudinal edge thereof; and a hanger assembly having a window therein, the window having an edge receivable by the at least one profile, the profile supporting the hanger assembly and method. | 07-30-2009 |
20090218101 | APPARATUS AND METHOD FOR INFLOW CONTROL - An inflow control assembly. The inflow control assembly can include an inner tubular member comprising a hole formed therethrough. A cover assembly can encircle the hole. The cover assembly can include a first outer member disposed about at least a portion of the inner tubular member. The first outer member can be secured to the inner tubular member. A second outer member can be disposed about at least a portion of the inner tubular member, and the second outer member can be secured to the inner tubular member. A screen portion can be disposed between the outer members and between the inner tubular member and the outer members. An annulus can be formed between the outer members and the inner tubular member, and the annulus can provide a flow path between the hole and the screen portion. | 09-03-2009 |
20090266549 | METHOD AND ASSEMBLY FOR PRODUCING OIL AND/OR GAS THROUGH A WELL TRAVERSING STACKED OIL AND/OR GAS BEARING EARTH LAYERS - An assembly for producing oil and/or gas through a well traversing stacked oil and/or gas bearing earth layers comprises a series of expandable packers and integrated perforating gun and sandscreen assemblies mounted on a production tubing such that each integrated perforating gun and sandscreen assembly is located adjacent an oil and/or gas bearing earth layer and at least one expandable packer is located between a pair of adjacent oil and/or gas bearing earth layers, and at least one inflow opening arranged in the wall of the production tubing adjacent to each sandscreen assembly. The integrated perforating gun and sandscreen assemblies are installed in a single run into the well such that uncontrolled fluid and/or sand influx into the well before installation of the sandscreens and expandable packers is avoided. | 10-29-2009 |
20090321078 | METHOD FOR REDUCTION OF CONTROL LINES TO OPERATE A MULTI-ZONE COMPLETION - A method for reducing the number of control lines needed to control a plurality of downhole devices including supplying a first control line in operable communication with a plurality of devices, the plurality of devices including at least one group of devices; supplying a second control line in operable communication with said at least one group of devices; and actuating each device of the plurality of devices in said at least one group of devices simultaneously in response to a pressure event. | 12-31-2009 |
20100038088 | Multi-function multi-hole drilling rig - A multi-function multi-hole rig is disclosed which, in certain aspects, includes multiple machines for accomplishing rig functions, e.g. drilling machine(s), tripping machine(s), casing machine(s), and/or cementing machine(s), for producing multiple usable wellbores one after the other. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(b). | 02-18-2010 |
20100044051 | ZONE ISOLATION ASSEMBLY ARRAY FOR ISOLATING A PLURALITY OF FLUID ZONES IN A SUBSURFACE WELL - A zone isolation assembly array ( | 02-25-2010 |
20100071905 | Pressure Relieving Transition Joint - A method of completing a wellbore having a branch wellbore extending outwardly from a window in a parent wellbore is provided. The method comprises positioning a tubular string in the window, wherein the positioning comprises deflecting the tubular string from the parent wellbore into the branch wellbore. The method also comprises providing a particulate barrier outside and against the tubular string proximate the window, the particulate barrier substantially excluding transport of particulate matter from the branch wellbore into the parent wellbore outside of the tubular string through the window. The method also comprises the tubular string passing fluid into the tubular string proximate the window from a formation proximate to the window while substantially excluding transport of particulate matter from the formation proximate to the window into the tubular string. | 03-25-2010 |
20100101798 | DOWNHOLE SYSTEMS AND METHODS FOR DELIQUIFACTION OF A WELLBORE - A downhole assembly for deliquifying a wellbore. In an embodiment, the assembly comprises a nozzle section including a converging nozzle and a diverging nozzle in fluid communication with the converging nozzle. In addition, the assembly comprises a throat section including a convergent throat passage proximal the diverging nozzle and a cylindrical throat passage distal the diverging nozzle and extending axially from the convergent throat passage. The convergent throat passage and the cylindrical throat passage are in fluid communication with the diverging nozzle. Further, the assembly comprises a diffuser section coaxially aligned with the throat section. The diffuser section includes a divergent diffuser passage extending axially from the straight throat passage. | 04-29-2010 |
20100126729 | Systems and methods for operating a plurality of wells through a single bore - Systems and methods usable to operate on a plurality of wells through a single main bore are disclosed herein. One or more chamber junctions are provided in fluid communication with one or more conduits within the single main bore. Each chamber junction includes a first orifice communicating with the surface through the main bore, and one or more additional orifices in fluid communication with individual wells of the plurality of wells. Through the chamber junctions, each of the wells can be individually or simultaneously accessed. A bore selection tool having an upper opening and at least one lower opening can be inserted into the chamber junction such that the one or more lower openings align with orifices in the chamber junction, enabling selected individual or multiple wells to be accessed through the bore selection tool while other wells are isolated from the chamber junction. | 05-27-2010 |
20100147524 | MULTI-FUNCTION MULTI-HOLE DRILLING RIG - A multi-function multi-hole rig including multiple machines for accomplishing various rig functions, e.g., drilling machine(s), tripping machine(s), casing machine(s), cementing machine(s), workover machine(s), etc., for drilling, completing and/or working over multiple wellbores without moving the rig. Rig functions may be performed one after the other and/or simultaneously, while allowing other functions related to completion and production to continue simultaneously. | 06-17-2010 |
20100163240 | DOWNHOLE MULTIPLE BORE TUBING APPARATUS - A tubing assembly for entering multiple boreholes includes an outer shroud having an axial throughbore, and an inner tubular member disposed in the axial throughbore, wherein the tubular member is releasably coupled to the shroud, and wherein the outer diameter of the shroud is adjustable. A tubing assembly for entering multiple boreholes may also include a shroud having an axial throughbore, a movable tubular member disposed in the axial throughbore, and a releasable coupling between the shroud and the tubular member, wherein the releasable coupling includes a retracted position allowing entry of the tubing assembly into a junction between two boreholes, wherein the releasable coupling includes an expanded position allowing movement of the tubular member relative to the shroud and prevents re-entry of the tubing assembly into the junction. | 07-01-2010 |
20100170677 | MULTIPLE PRODUCTION STRING APPARATUS - A production tubing assembly for accessing multiple boreholes includes an outer shroud having an axial throughbore, a deflector disposed in the axial throughbore and releasably coupled to the outer shroud, and at least two tubular members releasably coupled to the deflector by extendable latch assemblies, wherein the deflector with the coupled tubular members is extendable from within the outer shroud to a position beyond the outer shroud, wherein, in the extended position, the latch assemblies extend to release the tubular members and latch the deflector to the outer shroud. | 07-08-2010 |
20100300695 | PLUG IN PUMP FOR INVERTED SHROUD ASSEMBLY - The pump can be utilized in gassy oil wells to prevent gas slugs from locking the electrical submersible pump. A shroud assembly is provided with a bottom that can be fixed to the top of a seal section connected to the top of a motor. Additional lengths of shroud can be added as the shroud assembly is lowered into the well. The electrical submersible pump can then lowered into the shroud and supported from a production tubing string. A hanger can then be attached to the production tubing string to carry the weight of the shroud assembly, motor, and seal section. | 12-02-2010 |
20110005762 | Forming Multiple Deviated Wellbores - A system includes a primary wellbore and a plurality of secondary wellbores. The primary wellbore includes a substantially vertical portion extending from a terranean surface to a predetermined location above a first target subterranean formation; a curved portion coupled to the substantially vertical portion and extending through the first target subterranean formation above a second target subterranean formation containing at least one of oil or gas; and a substantially horizontal portion coupled to the curved portion and extending through the first target subterranean formation and adjacent the second target subterranean formation. The plurality of secondary wellbores are coupled to the primary wellbore and extend angularly downward into the second target subterranean formation. | 01-13-2011 |
20110030963 | MULTIPLE WELL TREATMENT FLUID DISTRIBUTION AND CONTROL SYSTEM AND METHOD - A system for distributing fluid to a plurality of wellbores drilled from a common pad includes at least two fluid conduits extending between the wellbores. The fluid conduits are configured to couple at one end to a fluid pump. At least one remotely operable valve is hydraulically connected to each fluid conduit proximate each wellbore. At least one flow line hydraulically connects each remotely operable valve to each wellbore such that fluid moved through the flow line enters the wellbore. A control unit is disposed proximate the pad and is configured to operate the remotely operable valves. | 02-10-2011 |
20110132611 | TEMPERATURE-ACTIVATED SWELLABLE WELLBORE COMPLETION DEVICE AND METHOD - Disclosed herein is a completion device that includes an interior layer that swells when exposed to a wellbore fluid; and an exterior layer encasing the interior layer and configured to be impermeable to the wellbore fluid at temperatures below an activation depth temperature, and configured to be permeable to the wellbore fluid at temperatures above the activation depth temperature. Also disclosed herein is a method of deploying a completion device that includes encasing an interior layer of the device in a temperature-sensitive exterior layer that is impermeable to a fluid in the wellbore at temperatures below an activation depth temperature; attaching the device on a tube string; inserting the tube string into the wellbore; creating a leak path in the temperature-sensitive exterior layer in response to the device being exposed to the activation depth temperature in the wellbore; and swelling the interior layer with the wellbore fluid. | 06-09-2011 |
20110139458 | WELL COMPLETION WITH HYDRAULIC AND ELECTRICAL WET CONNECT SYSTEM - A technique facilitates deployment of completion stages downhole in a well environment. A first completion stage is deployed downhole into a wellbore with a plurality of control lines having at least one hydraulic control line and at least one electrical control line. A second completion stage is assembled with an electric submersible pumping assembly and a plurality of corresponding control lines having at least one hydraulic control line and a least one electric control line. The second completion stage is conveyed downhole into the wellbore until engaged with the first completion stage which automatically joins the plurality of control lines. The control lines may then be used to operate both electrical and hydraulic devices of the first completion stage. | 06-16-2011 |
20110214875 | Completion String Deployment in a Subterranean Well - A method for deploying a completion string in a previously drilled borehole includes rotating the string at the surface while axially urging the assembly deeper into the borehole. This rotation is preferably only partially transferred down the completion string such that a lower portion of the string typically remains rotationally stationary with respect to the borehole. The completion string may be reciprocated upwards and downwards from the surface so as to enable the lower portion of the completion string to rotate. The completion string may alternatively be rotated back and forth, alternating between first and second rotational directions so as to maintain an applied surface torque below a predetermined threshold. The invention has been found to reduce drag between a completion assembly and the wall of a previously drilled borehole. | 09-08-2011 |
20110226481 | Apparatus and Method for Controlling Fluid Flow Between Formations and Wellbores - In one aspect, a passive flow control device for controlling flow of a fluid is provided, which device in one configuration include a longitudinal member configured to receive fluid radially along a selected length of the longitudinal member, the longitudinal member including flow restrictions configured to cause a pressure drop across the radial direction of the longitudinal member. In another aspect, a method of completing a wellbore is provided, which method in one embodiment may include providing a flow control device that includes a tubular with a first set of fluid flow passages and at least one member with a second set of fluid passages placed outside the tubular, wherein the first and second set of passages are offset along a longitudinal direction and the member is configured to receive a fluid along the radial direction; placing the flow control device at a selected location a wellbore; and allowing a fluid flow between the formation and the flow control device. | 09-22-2011 |
20120132427 | Pressure Relieving Transition Joint - A method of completing a wellbore having a branch wellbore extending outwardly from a window in a parent wellbore is provided. The method comprises positioning a tubular string in the window, wherein the positioning comprises deflecting the tubular string from the parent wellbore into the branch wellbore. The method also comprises providing a particulate barrier outside and against the tubular string proximate the window, the particulate barrier substantially excluding transport of particulate matter from the branch wellbore into the parent wellbore outside of the tubular string through the window. The method also comprises the tubular string passing fluid into the tubular string proximate the window from a formation proximate to the window while substantially excluding transport of particulate matter from the formation proximate to the window into the tubular string. | 05-31-2012 |
20120261130 | METHOD AND APPARATUS FOR MULTILATERAL CONSTRUCTION AND INTERVENTION OF A WELL - A multilateral access system for a multilateral well including a main well bore and at least one lateral well bore includes a tubular workstring having an inner string and an outer string. The outer string includes a diverter body having a cylindrical housing with a lateral window, the diverter body being shaped and dimensioned to direct the inner string the lateral window and into the at least one lateral well bore. The system is used by positioning the tubular workstring within a multilateral bore. The method further includes positioning the diverter body such that the window of the diverter body faces a milled casing window of the lateral well bore and moving the inner string upwardly above the diverter body. Subsequently, the inner string is lowered back though the diverter body, wherein the diverter body exerts a lateral force on a lower end of the inner string urging the lower end of the inner string toward the milled casing window. | 10-18-2012 |
20130043031 | MANIFOLD STRING FOR SELECTIVITY CONTROLLING FLOWING FLUID STREAMS OF VARYING VELOCITIES IN WELLS FROM A SINGLE MAIN BORE - A set of manifold string members usable to selectively control separate flowing fluid streams of varying velocities for operations of well construction, injection or production of fluid mixtures of liquids, gases and/or solids, that can be injected into, or taken from, one or more proximal regions of a subterranean passageway, underground cavern, hydrocarbon or geothermal reservoir. Fluid communicated through a manifold string radial passageway of a manifold crossover, between conduit strings and at least one other conduit, can be controlled with at least one flow controlling member, communicating with a passageway member from an innermost, concentric, and/or annular passageway. Fluid communication can be selectively controlled for various configurations of one or more substantially hydrocarbon and/or substantially water wells, below a single main bore and wellhead. | 02-21-2013 |
20130192840 | MULTILATERAL LOCATION AND ORIENTATION ASSEMBLY - A location and orientation assembly suitable for use in a multi-lateral wellbore may include a coupling portion, an upper muleshoe, a muleshoe spacer and a bottom muleshoe. The bottom muleshoe may connect to the coupling portion through a threaded connection. A method for locating and orienting in a multi-lateral wellbore includes providing a locating and orientation assembly. In the orientation assembly a coupling portion is provided and an upper muleshoe is inserted into the coupling portion. A muleshoe spacer is inserted into the coupling portion so as to matingly contact the upper muleshoe portion. Part of a bottom muleshoe is inserted into the coupling portion so as to matingly contact the muleshoe spacer. The coupling portion is jointed to the bottom muleshoe by a threaded connection. | 08-01-2013 |
20130306324 | SYSTEMS AND METHODS FOR OPERATING A PLURALITY OF WELLS THROUGH A SINGLE BORE - Systems and methods usable to operate on a plurality of wells through a single main bore are disclosed herein. One or more chamber junctions are provided in fluid communication with one or more conduits within the single main bore. Each chamber junction includes a first orifice communicating with the surface through the main bore, and one or more additional orifices in fluid communication with individual wells of the plurality of wells. Through the chamber junctions, each of the wells can be individually or simultaneously accessed. A bore selection tool having an upper opening and at least one lower opening can be inserted into the chamber junction such that the one or more lower openings align with orifices in the chamber junction, enabling selected individual or multiple wells to be accessed through the bore selection tool while other wells are isolated from the chamber junction. | 11-21-2013 |
20140020902 | RESTRICTING PRODUCTION OF GAS OR GAS CONDENSATE INTO A WELLBORE - A method of producing liquid hydrocarbons from a subterranean formation can include flowing the liquid hydrocarbons from the formation through at least one valve, and increasingly restricting flow through the valve in response to pressure and temperature in the formation approaching a bubble point curve from a liquid phase side thereof. A method of producing gaseous hydrocarbons from a subterranean formation can include flowing the gaseous hydrocarbons from the formation through at least one valve, and increasingly restricting flow through the valve in response to pressure and temperature in the formation approaching a hydrocarbon gas condensate saturation curve from a gaseous phase side thereof. | 01-23-2014 |
20140102710 | MULTILATERAL BORE JUNCTION ISOLATION - A junction can be isolated from fracturing pressure using a liner extending from a one bore through a junction into a lateral bore, where at least a portion of the liner is retrievable from the lateral bore prior to completion of wellbore construction. The junction may be temporarily isolated from high pressure, such as high pressure from a fracturing stimulation process. Part of the liner can be retrieved using a disconnect mechanism or technique. | 04-17-2014 |
20150034325 | Inclined Wellbore Optimization for Artificial Lift Applications - A system for removing liquids from an inclined wellbore includes a plug member positioned within a heel section of the inclined wellbore, the plug member including an orifice therethrough; a first tubular member having a first end for providing fluid flow from the first portion of the wellbore to the second portion of the wellbore, a second end positioned at least partially within the second portion of the wellbore and providing fluid flow from the first portion of the wellbore to the second portion of the wellbore; a second tubular member positioned within the second portion of the wellbore, the second tubular member having a first end for receiving fluid from the second portion of the wellbore, the second end positioned adjacent the surface of the inclined wellbore; and a pump for pumping fluid from the second tubular member to the surface. | 02-05-2015 |
20150060077 | INTEGRATED PACKER AND FLUID CROSS-OVER SUBASSEMBLY FOR GAS INJECTION AND FLUID REMOVAL IN A WELL - A subassembly is provided which is designed so that two passageways in concentrically arranged tubing strings can be formed to provide a flow-path which in a first direction communicates with equipment at surface in an annular passageway then switches partway along the tubing strings' length in the well to the subassembly and is redirected to the core passageway, and back from the string's lower end up the annular space to the subassembly and is again redirected this time to the tubing's core passageway back to surface equipment; the two passageways being: the core passageway formed of the core tubing's inner volume; and the annular passageway formed of the annular space between the core tubing string and a concentrically surrounding second tubing string's inner surface; the subassembly forming a two-way cross-over between the two passageways at the same part of the string. | 03-05-2015 |
20150068756 | MULTILATERAL JUNCTION SYSTEM AND METHOD THEREOF - A multilateral junction system includes a multilateral junction device including a first bore leg; a second bore leg; a joint section having a first opening connected to the first bore leg and a second opening connected to the second bore leg. A main body extending from the joint section and including a third opening; and, a tube connected to the third opening. The tube configured to enable an upper completion to be run into a borehole together with the multilateral junction device. Also included is a method of improving multilateral operations in a borehole. | 03-12-2015 |
20160186538 | Coiled Tubing through Production Tubing Zone Isolation and Production Method - An existing well has zones that respectively produce water and desired fluids. Existing production tubing is in the well to a location uphole of the producing zones and preferably in a lateral portion on the borehole. The water producing zone is between the surface and the productive zone. A coiled tubing string with a straddle assembly of inflatable isolation packers is run through the production string. An optional milling out of the lower end of the production string can take place first. The inflatable straddle assembly is run past the end of the production string for placement to straddle the water zone while allowing production from the productive zone. The coiled tubing serves as the new production tubing for the productive zone. One or more zones can be isolated or aligned for flow from productive zones. | 06-30-2016 |