Class / Patent application number | Description | Number of patent applications / Date published |
166281000 | Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking formation | 65 |
20080196896 | Methods and apparatus for fiber-based diversion - Methods and apparatus are described for fiber-based fluid diversion in hydrocarbon-containing wells. One method embodiment of the invention comprises treating a first zone in a well; conveying a tool into the well, the tool carrying a composition comprising fibers; and activating the tool to deploy enough of the composition to form a fibrous plug and at least partially plug the first zone. The tool may be a positive displacement bailer, and an apparatus of the invention comprises a positive displacement bailer; the bailer comprising a compartment for holding a composition comprising fibers for forming fiber-based plugs in a well; the compartment partially defined by and cooperating with a positive displacement portion to expel and selectively deploy the composition in the well to form one or more fiber-based plugs in the well. | 08-21-2008 |
20080210423 | Circulated Degradable Material Assisted Diversion - Circulated degradable material assisted diversion (CMAD) methods for well treatment in completed wells are disclosed. A slurry of solid degradable material is circulated in the well with return of excess slurry, a plug of the degradable material is formed, a downhole operation is performed around the plug diverter, and the plug is then degraded for removal. Degradation triggers can be temperature or chemical reactants, with optional accelerators or retarders to provide the desired timing for plug removal. In multilayer formation CMAD fracturing, the plug isolates a completed fracture while additional layers are sequentially fractured and plugged, and then the plugs are removed for flowback from the fractured layers. | 09-04-2008 |
20080264636 | Method and apparatus for hydraulic treatment of a wellbore - A method and apparatus for applying hydraulic treatment and diversion treatment to a wellbore are described. The method involves isolating a wellbore segment using hydraulic seals; applying fluid treatment and perforation diverters within the isolated segment; and scraping a portion of the wellbore after termination of treatment to remove any lodged perforation diverters from the wellbore. A collection chamber may also be provided for collecting used diverters for return to surface following treatment. In one embodiment, diverters used and collected within a first segment may be reused during treatment of a successive wellbore segment. | 10-30-2008 |
20090032255 | Method and apparatus for isolating a jet forming aperture in a well bore servicing tool - An embodiment of a well bore servicing apparatus includes a housing having a through bore and at least one high pressure fluid aperture in the housing, the fluid aperture being in fluid communication with the through bore to provide a high pressure fluid stream to the well bore, and a removable member coupled to the housing and disposed adjacent the fluid jet forming aperture and isolating the fluid jet forming aperture from an exterior of the housing. An embodiment of a method of servicing a well bore includes applying a removable member to an exterior of a well bore servicing tool, wherein the removable member covers at least one high pressure fluid aperture disposed in the tool, lowering the tool into a well bore, exposing the tool to a well bore material, wherein the removable cover prevents the well bore material from entering the fluid aperture, removing the removable member to expose a fluid flow path adjacent an outlet of the high pressure fluid aperture, and flowing a well bore servicing fluid through the fluid aperture outlet and flow path. | 02-05-2009 |
20090065209 | Multifunctional Nanoparticles for Downhole Formation Treatments - An aqueous, viscoelastic fluid gelled with a viscoelastic surfactant (VES) is stabilized and improved with an effective amount of an alkaline earth metal oxide alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides transition metal oxides, transition metal hydroxides, post-transition metal oxides, and post-transition metal hydroxides. These fluids are more stable and have a reduced or no tendency to precipitate, particularly at elevated temperatures, and may also help control fluid loss. When the particle size of the magnesium oxide or other particulate agent is a nanometer scale, for instance having a mean particle size of 100 nm or less, that scale may provide unique particle charges that use chemisorption, “crosslinking” and/or other chemistries to associate and stabilize the VES fluids, and also help trap or fixate formation fines when deposited into a proppant pack in a fracture. | 03-12-2009 |
20090095474 | System and Method for Fracturing While Drilling - A method of fracturing a formation while drilling a wellbore includes the steps of: providing a bottomhole assembly (“BHA”) having a reamer positioned above a pilot hole assembly; connecting the BHA to a drill string; actuating the BHA to drill a first wellbore section with the reamer and to drill a pilot hole with the pilot hole assembly; hydraulically sealing the pilot hole from the first wellbore section; and fracturing the formation proximate the pilot hole. | 04-16-2009 |
20090166040 | CASING DEFORMATION AND CONTROL FOR INCLUSION PROPAGATION - Casing deformation and control for inclusion propagation in earth formations. A method of forming at least one inclusion in a subterranean formation includes the steps of: installing a liner within a casing section in a wellbore intersecting the formation; and expanding the liner and the casing section, thereby applying an increased compressive stress to the formation. Another method of forming the inclusion includes the steps of: installing an expansion control device on a casing section, the device including at least one latch member; expanding the casing section radially outward in a wellbore, the expanding step including widening at least one opening in a sidewall of the casing section, and displacing the latch member in one direction; and preventing a narrowing of the opening after the expanding step, the latch member resisting displacement thereof in an opposite direction. | 07-02-2009 |
20090166041 | Zirconium-hydroxy alkylated amine-hydroxy carboxylic acid cross-linking composition for use with high pH polymer solutions - A process to prepare a solution of zirconium-hydroxyalkylated diamine-lactic acid complex is disclosed and use of the solution in oil field applications such as hydraulic fracturing and plugging of permeable zones. The process comprises contacting an alcohol solution of a zirconium complex with an hydroxyalkylated diamine, then with lactic acid to produce a solution of zirconium-hydroxyalkylated diamine-lactic acid complex. The solution is particularly suitable for use in a cross-linking composition in hydraulic fracturing and plugging of permeable zones of subterranean formations at pH of 10 or greater and at temperatures of 275° F. (135° C.) and higher in the formation. | 07-02-2009 |
20090242202 | Method of Perforating for Effective Sand Plug Placement in Horizontal Wells - Methods of isolating portions of a subterranean formation are disclosed. The planned settled height of a sand plug in a well bore adjacent a first zone of the subterranean formation is determined. The first zone is then perforated using a hydrajetting tool which is oriented so as to form perforations below the planned settled height of the sand plug. | 10-01-2009 |
20090301720 | REMOTE PLUGGING DEVICE FOR WELLS - Remote cement plugging device ( | 12-10-2009 |
20100000736 | ENHANCED GEOTHERMAL SYSTEMS AND RESERVOIR OPTIMIZATION - Systems and methods for maximizing energy recovery from a subterranean formation are herein disclosed. According to one embodiment, a selected subterranean open-hole interval is isolated and at least one fracture is stimulated in the isolated subterranean open-hole interval. | 01-07-2010 |
20100084134 | FRACTURING METHOD AND APPARATUS UTILIZING GELLED ISOLATION FLUID - A method and apparatus for fracturing a formation containing a wellbore comprising the steps of (a) injecting a gel into the wellbore; (b) permitting the gel to increase in viscosity and (c) fracturing the formation in the vicinity of the gel. | 04-08-2010 |
20100126723 | Fluid Loss Control - A fluid loss control method uses a fluid loss control pill in a well in advance of a completion operation. An embodiment of the fluid loss control pill comprises polyester solids that are hydrolysable and can exhibit plastic deformation at formation conditions. An embodiment of the method comprises spotting the fluid loss control pill in the well adjacent to a formation to form a filtercake to inhibit fluid entry from the well into the formation, performing a completion operation comprising contacting the filtercake with overbalanced wellbore fluid, and degrading the filtercake wherein the polyester particles are hydrolyzed to remove formation damage. | 05-27-2010 |
20100126724 | Method and apparatus for isolating a jet forming aperture in a well bore servicing tool - An embodiment of a well bore servicing apparatus includes a housing having a through bore and at least one high pressure fluid aperture in the housing, the fluid aperture being in fluid communication with the through bore to provide a high pressure fluid stream to the well bore, and a removable member coupled to the housing and disposed adjacent the fluid jet forming aperture and isolating the fluid jet forming aperture from an exterior of the housing. An embodiment of a method of servicing a well bore includes applying a removable member to an exterior of a well bore servicing tool, wherein the removable member covers at least one high pressure fluid aperture disposed in the tool, lowering the tool into a well bore, exposing the tool to a well bore material, wherein the removable cover prevents the well bore material from entering the fluid aperture, removing the removable member to expose a fluid flow path adjacent an outlet of the high pressure fluid aperture, and flowing a well bore servicing fluid through the fluid aperture outlet and flow path. | 05-27-2010 |
20100252264 | METHOD OF TREATING A SUBTERRANCAN FORMATION WITH COMBINED BREAKER AND FLUID LOSS ADDITIVE - A method of treating a subterranean formation penetrated by a wellbore is accomplished by introducing a fluid into the wellbore containing a combined fluid loss additive and breaker. The combined fluid loss additive and breaker is formed from particles of an organic peroxide provided on a substrate. The particles are sized to facilitate fluid loss control. A treatment operation is carried out wherein a treatment fluid viscosified with a polymer is introduced into the formation through the wellbore. | 10-07-2010 |
20110048708 | Methods of Fluid Placement and Diversion in Subterranean Formations - Improved methods of placing and/or diverting treatment fluids in subterranean formations are provided. In one embodiment, the methods comprise: introducing a diverting material into a subterranean formation penetrated by a well bore to reduce or prevent the flow of fluid into a first portion of the subterranean formation; introducing a first fluid into a second portion of the subterranean formation having a higher fluid flow resistance than the first portion of the subterranean formation; allowing the diverting material to be removed from the subterranean formation after at least a portion of the first fluid has been introduced into the second portion of the subterranean formation; and introducing a second fluid into the first portion of the subterranean formation. | 03-03-2011 |
20110079389 | METHOD FOR TREATING WELL BORE WITHIN A SUBTERRANEAN FORMATION - The invention discloses a method of creating a polymerized composition in a well bore: providing a polymerizable composition made of a polymerization initiator and a monomer polymerizable by frontal polymerization; introducing the polymerizable composition into the wellbore; exposing the polymerizable composition to a trigger to activate the frontal polymerization; and creating the polymerized composition. | 04-07-2011 |
20110162843 | PROCESS AND APPARATUS TO IMPROVE RELIABILITY OF PINPOINT STIMULATION OPERATIONS - An anchor tool having a housing, a one-way restrictor device in fluid communication with the housing, and a stabilizer affixed to the housing. The one-way restrictor device is configured to allow restricted flow in a first direction, and to allow flow in a second direction. | 07-07-2011 |
20110180260 | METHOD OF TREATING SUBTERRANEAN FORMATIONS USING MIXED DENSITY PROPPANTS OR SEQUENTIAL PROPPANT STAGES - An increase in effective propped lengths is evidenced in hydraulic fracturing treatments by the use of ultra lightweight (ULW) proppants. The ULW proppants have a density less than or equal to 2.45 g/cc and may be used as a mixture in a first proppant stage wherein at least one of the proppants is a ULW proppant. Alternatively, sequential proppant stages may be introduced into the formation wherein at least one of the proppant stages contain a ULW proppant and where at least one of the following conditions prevails: | 07-28-2011 |
20110214861 | System and method for fluid diversion and fluid isolation - A method of cementing a wellbore, comprising delivering a diversion and movable isolation tool into the wellbore and thereby at least partially isolating a first wellbore volume from a second wellbore volume, the second wellbore volume being uphole relative to the first wellbore volume, passing fluid through the diversion and movable isolation tool into the first wellbore volume, substantially discontinuing the passing of fluid through the diversion and movable isolation tool into the first wellbore volume, passing fluid through the diversion and movable isolation tool into the second wellbore volume. A diversion and movable isolation tool for a wellbore, comprising a body comprising selectively actuated radial flow ports, and a fluid isolation assembly, comprising one or more segments, each segment comprising a central ring and at least one tab extending from the central ring. | 09-08-2011 |
20110284221 | Apparatus And Methods For Completing Subterranean Wells - The external surface of a tubular body such as well casing is coated with a substance that, upon exposure to cement, is unstable and degrades. After installation in a subterranean well and subsequent cementation, the coating degrades and forms a gap between the external surface of the tubular body and the cement sheath. Forming the gap is useful for obtaining optimal stimulation during the hydraulic fracturing of unconventional shale-gas formations. | 11-24-2011 |
20110284222 | CHELANT BASED SYSTEM AND POLYLACTIDE RESIN FOR ACID DIVERSION - Compositions and methods for treating a subterranean formation including forming a fluid comprising chelant and polylactide resin fiber; and introducing the fluid to a subterranean formation, wherein the temperature of the formation is about 300° F. or warmer. Compositions and methods for treating a subterranean formation including forming a fluid comprising viscoelastic surfactant, trisodium hydroxyethylethylenediamine-triacetate and polylactide resin fiber; and introducing the fluid to a subterranean formation, wherein the temperature of the formation is about 300° F. or warmer. | 11-24-2011 |
20120080190 | ZONAL CONTACT WITH CEMENTING AND FRACTURE TREATMENT IN ONE TRIP - Systems and methods for fracturing multiple zones in a wellbore are provided. Cement can be pumped through a work string into a first annulus formed between a liner and a wall of the wellbore. One or more first contact valves in the liner can be opened with the work string. Fluid can flow through the work string and the one or more first contact valves to fracture a first zone. One or more second contact valves in the liner can be opened with the work string. Fluid can flow through the work string and the one or more second contact valves to fracture a second zone. | 04-05-2012 |
20130014947 | Drilling/Frac Adapter and Method of Use - A method of drilling and fracturing a well includes installing a drilling/frac adapter on a lower wellhead housing. The drilling/frac adapter has a higher internal pressure rating than the lower wellhead housing. The operator drills through the drilling/frac adapter to a desired depth, then runs and cements a casing string in the well. A lower packoff is installed in an annulus between the casing hanger and the lower wellhead housing and an upper packoff is set in an annulus between the drilling/frac adapter and the casing hanger. Frac fluid is pumped through the frac tree into the casing string at a higher pressure than the pressure rating of the lower housing but less than the pressure rating of the drilling/frac adapter. Then, the upper packoff and the drilling/frac adapter are removed from the lower housing and installing an upper wellhead housing on the lower wellhead housing. | 01-17-2013 |
20130056206 | VALVE FOR HYDRAULIC FRACTURING THROUGH CEMENT OUTSIDE CASING - A valve for use in fracing through cement casing in a well allows for flow of cement down the well during the cementing process and in the open position allows for fracing fluid to be directed through the cement casing for fracturing the formation adjacent the valve. The valve is constructed so as to reduce the likelihood of the valve to jam as a result of cement or other foreign material. | 03-07-2013 |
20130075094 | Cement Shoe and Method of Cementing Well with Open Hole Below the Shoe - A casing shoe secured to a lower end of a casing string is positioned a selected distance from a bottom of the well, defining an open hole portion in the well below the casing shoe. Cement is pumped through the casing shoe and back up an annulus surrounding the casing string, while leaving at least part of the open hole portion free of cement. The annulus and the open hole portion are isolated from an interior of the casing string while the cement is uncured. The casing shoe has a timer that opens the interior of the casing string to the open hole portion after a selected time sufficient for the cement to cure. The operator may then pump a tool down the casing string while displacing fluid in the casing string below the tool through the casing shoe and into the open hole portion of the well. | 03-28-2013 |
20130092375 | LINER WIPER PLUG WITH BYPASS OPTION - Methods and apparatus for liner wiper plugs with bypass options to allow displacing fluid to be pumped through after the liner wiper plug is set in a liner hanger system landing collar. By pumping displacing fluids through the bypass, uncured cement may be removed from the shoe track area and an area external to the shoe track area. | 04-18-2013 |
20130098613 | GEOTHERMAL WELL DIVERSION AGENT FORMED FROM IN SITU DECOMPOSITION OF CARBONYLS AT HIGH TEMPERATURE - A method of selectively blocking fractures in a subterranean formation by injecting a diversion agent into the well is disclosed. According to one embodiment, the method comprises injecting a diversion agent into a subterranean formation to form an alkaline-earth carbonate precipitate from decomposition of a carbonyl compound, wherein the diversion agent includes the carbonyl compound and an alkaline-earth halide salt. | 04-25-2013 |
20130126162 | IN-SITU ZONAL ISOLATION AND TREATMENT OF WELLS - This invention relates to a process for isolating one or more segments of a gravel packed well from other segments to treat the isolated segments and easily re-establish flow from the other segments after the treatment. The treatment includes techniques for enhancing or permanently blocking production from the isolated segment. The process includes the installation of a removable sealing element and a permeability poison that forms a fluid seal to prevent longitudinal fluid flow along the annular production space outside the tubular production pipe. With wireline or other low-cost wellbore workover systems, access is re-engaged with the secluded formation including removal of plugs and fluid seals within the tubular production pipe. The inventive process allows enhanced recovery of fluids by focusing treatments on problem areas without harming productive segments of the well. | 05-23-2013 |
20130133887 | Methods for Initiating New Fractures in a Completed Wellbore Having Existing Fractures Present Therein - Fracturing operations can be problematic in completed wellbores containing at least one existing fracture, since it can be difficult to seal an existing fracture and initiate a new fracture within a reasonable timeframe due to the presence of particulate materials in the wellbore. Methods for fracturing a completed wellbore can comprise introducing a treatment fluid comprising a plurality of degradable sealing particulates into a completed wellbore penetrating a subterranean formation having an existing fracture therein; sealing the existing fracture with at least a portion of the degradable sealing particulates, thereby forming a degradable particulate seal; after sealing, allowing any degradable sealing particulates remaining in the treatment fluid to degrade, such that the treatment fluid becomes substantially particulate free; and after the treatment fluid becomes substantially particulate free, fracturing the subterranean formation so as to introduce at least one new fracture therein. | 05-30-2013 |
20130140023 | ASSEMBLIES AND METHODS FOR MINIMIZING PRESSURE-WAVE DAMAGE - An assembly for minimizing damaging effects of pressure waves on devices in a wellbore. The assembly comprises a dynamic device disposed in the wellbore and generating pressure waves during actuation; a barrier device disposed in the wellbore and presenting an obstacle to the pressure waves generated by the dynamic device; and an occlusion disposed in the wellbore between the dynamic device and the barrier device which reduces the damaging effects of the pressure waves on the barrier device. | 06-06-2013 |
20130161004 | METHOD OF FRACTURING WHILE DRILLING - A method of fracturing a formation that at the same time drills a wellbore through the formation selectively deploys a seal from a drill string and pressurizes the wellbore beneath the seal. The seal can be formed by moving sliding blades into channels between cutting blades on a drill bit. The seal can also be a packer on the drill bit that selectively expands radially outward into sealing engagement with the wellbore. At a designated depth in the wellbore, the seal is deployed and fluid is diverted into the space. A pressurizing system pressurizes the fluid so that pressure in the space overcomes the formation strength and fractures the formation adjacent the enclosed space. The packer can be released, drilling can resume, and fracturing can occur at a different depth in the wellbore. | 06-27-2013 |
20130186625 | Refracturing Method for Plug and Perforate Wells - The method of the present invention deploys CEM into the existing perforations to seal them and then using a BHA that isolates a portion of the wellbore to deliver a material that removes the CEM at a predetermined rate so that the BHA can be used to refracture the recently opened perforation. Additional new perforations can be made and fractured during the process. | 07-25-2013 |
20130192827 | PRESSURE ACTUATION ENABLING METHOD - A pressure actuation enabling method includes plugging a passage that fluidically connects an inside with an outside of a tubular with a plug, building differential pressure across the plug, actuating an actuator with the differential pressure and removing the plug. | 08-01-2013 |
20130206409 | ONE-WAY FLOWABLE ANCHORING SYSTEM AND METHOD OF TREATING AND PRODUCING A WELL - A one-way flowable anchoring system includes a plurality of same anchors that are sealedly fixedly engagable within a structure and each of the plurality of same anchors has a flow bore longitudinally therethrough with a first seat and a second seat on opposing ends thereof The system also has a plug positionable within the structure between two of the plurality of same anchors positioned longitudinally adjacent one another. The plug is sealedly engagable to substantially block flow through the flow bore of a first of the plurality of same anchors when sealingly engaged with the first seat thereof and the plug is seatingly engagable to allow flow around the plug and into the flow bore of the second of the plurality of same anchors through an area at least equal to that of the flow bore when the plug is seated at the second seat thereof | 08-15-2013 |
20130264056 | Multizone Frac System - An array of plugging devices are pumped sequentially from the surface through a liner, that typically becomes horizontal in nature, where each plugging device is anchorable at a specified position along the length of the liner. When the plugging device is anchored, a cluster of perforations is generated above the plugging device where the perforations may be created by detonation of a perforating gun attached to the top side of the plugging device or the perforations may be created by shifting of a sleeve that is anchored to the plugging device. The plugging device may be a cup plug where the cup is similar to a swab cup and when pump pressure is applied to the cup, a force is generated to make the cup move through the liner. When anchored, the cup also directs frac fluids through the perforations to treat the well formation. The anchoring system used on the plug may be of the type where a full bore is maintained through the liner and also allows the cup plug to travel back to the surface due to flow from the well thus eliminating any need for milling obstructions from the well bore. The use of multiple plugging devices allows multizone stage fracing throughout the length of the well. | 10-10-2013 |
20130269938 | Well Treatment Apparatus, System, and Method - System, devices, and methods are described relating to the treatment (e.g., perforating, fracturing, foam stimulation, acid treatment, cement treatment, etc.) of well-bores (e.g., cased oil and/or gas wells). In at least one example, a method is provided for treatment of a region in a well, the method comprising: positioning, in a well-bore, a packer above the region of the well-bore, fixing, below the region, an expansion packer, treating the region, the treatment fixing the packer, moving the expansion packer, and moving the packer after the moving of the expansion packer. | 10-17-2013 |
20130319668 | PUMPABLE SEAT ASSEMBLY AND USE FOR WELL COMPLETION - An assembly and process for fracturing, stimulating and producing a wellbore having a plurality of oil or gas producing zones is provided comprising introducing into the well the pumpable seat assembly comprising a generally cylindrical tube having an outer diameter and an inner diameter with an upper end forming a ball seat; setting the pumpable seat assembly below an oil or gas producing zone to be produced; introducing a dissolvable ball into the well, said dissolvable ball having a sufficiently large enough outer circumference so that it can sit on the ball seat and temporarily restrict a flow of fluids to the portion of the wellbore located below the pumpable seat assembly; and fracturing the oil and gas producing zone to stimulate oil or gas production; whereby the biodegradable ball is configured to dissolve within a predetermined period of time so that when it dissolves any oil or gas produced from zones below the pumpable seat assembly can flow through the cylindrical tube. | 12-05-2013 |
20130319669 | CONTINUOUS MULTI-STAGE WELL STIMULATION SYSTEM - A system is provided that is conducive to multi-stage stimulation in a near-continuous fashion. That is, unlike conventional stimulation systems, embodiments herein may operate without the requirement of traditional plug-setting, perforating and fracturing interventions on a zone by zone basis for a cemented completion. Rather, the system is outfitted with frac sleeves that may be shifted open to expose the bore to the formation while simultaneously achieving a seal through a ball drop technique. Once more, this manner of operation is rendered practical by the sleeve being of a passable configuration such that cementing of the casing is not impeded. | 12-05-2013 |
20130341024 | METHOD OF TREATING A SUBTERRANEAN FORMATION WITH A MORTAR SLURRY DESIGNED TO FORM A PERMEABLE MORTAR - A method of treating a subterranean formation may include preparing a mortar slurry, injecting the mortar slurry into the subterranean formation at a pressure sufficient to create a fracture in the subterranean formation, and allowing the mortar slurry to set, forming a mortar in the fracture. The mortar slurry may be designed to form a pervious mortar, to crack under fracture closure pressure, or both. | 12-26-2013 |
20140014339 | DISINTEGRABLE DEFORMATION TOOL - A deformation system, including a deformable member and a tool operatively arranged to deform the member due to actuation of the tool from a first set of dimensions at which the deformable member is positionable with respect to a structure to a second set of dimensions at which the deformable member engages with the structure. The tool at least partially comprises a disintegrable material responsive to a selected fluid. A method of operating a deformation system is also included. | 01-16-2014 |
20140034310 | MULTI-ZONE CEMENTED FRACTURING SYSTEM - A method of cementing a liner string into a wellbore includes deploying a liner string into a wellbore; pumping cement slurry into a workstring; and pumping a dart through the workstring, thereby driving the cement slurry into the liner string. The dart engages a first wiper plug and releases the first wiper plug from the workstring. The dart and engaged first wiper plug drive the cement slurry through the liner string and into an annulus formed between the liner string and the wellbore. The dart and engaged first wiper plug land onto a first fracture valve. The dart releases a first seat into the first wiper plug. The dart engages a second wiper plug connected to the first fracture valve and releases the second wiper plug from the first fracture valve. | 02-06-2014 |
20140076560 | WELLBORE CEMENTING TOOL HAVING ONE WAY FLOW - A stage tool for reverse annular cementing a wellbore, comprising: a main body including a tubular wall with an outer surface and a longitudinal bore extending from a top end to a bottom end; a fluid port through the tubular wall providing fluidic access between the longitudinal bore and the outer surface; and a valve for controlling flow through the fluid port between the outer surface and the inner bore, the valve including a closure for the fluid port and a check valve for permitting one way flow through the fluid port in a direction from the outer surface to the inner bore, the check valve being normally inactive and only acting on fluid flows through the fluid port when activated. The stage tool may be run in closed and opened for cementing by hydraulic actuation of the valve. After sufficient cement has been introduced to the annulus, the stage tool fluid port can be closed to hold the cement in the annulus. | 03-20-2014 |
20140096965 | Methods of Fracturing a Well Using Venturi Section - Methods of fracturing a well can include the steps of: (A) obtaining a fracturing job design having at least one treatment interval; (B) running a tubular string into the treatment interval; (C) before or after the step of running, forming one or more tubular string openings in the tubular string, wherein after the step of running, the one or more tubular string openings are positioned in the treatment interval; (D) except for the axial passageway of the tubular string, blocking at least 86% of the nominal cross-sectional area of the treatment interval that is between one of the ends of the treatment interval and the axially closest of the one or more tubular string openings, and, except for the axial passageway of the tubular string, leaving unblocked at least 4% of the nominal cross-sectional area of the treatment interval; and (E) pumping a fracturing fluid through the one or more tubular string openings at a rate and pressure sufficient to initiate at least one fracture in the subterranean formation surrounding the treatment interval. | 04-10-2014 |
20140110112 | Erodable Bridge Plug in Fracturing Applications - In order to overcome the need to remove each packer after a plug and perforate operation in order to produce a well it is desirable to utilize an erodible packer that may allow one way flow. An erodible packer may be constructed of a material such as polyglycolic acid as a binder. The same packer may also allow one way flow past the packer, such as flow from the casing below the packer to the casing above the packer. The packer may erode upon the expiration of a predetermined period of time or upon exposure to an activating agent. | 04-24-2014 |
20140138086 | Apparatus and Methods For Releasing Drilling Rig and Blowout Preventer (BOP) Prior to Cement Bonding - Apparatus and methods for managing cementing operations are provided. An example method includes connecting a cementing adapter atop a casing head itself positioned atop a surface casing landed within a conductor pipe, connecting a drilling adapter atop the cementing adapter, connecting a blowout preventer to the drilling adapter, and drilling for and running production casing. The method also includes positioning a casing hanger at least partially within a bore of the cementing adapter to be immobilized therein to retain back pressure of cement within an annulus located between the production casing and the surface casing, cementing the production casing within the surface casing, and removing the drilling adapter and blowout preventer after running the cement, but typically prior to cement bonding. | 05-22-2014 |
20140138087 | METHOD OF RE-FRACTURING USING BORATED GALACTOMANNAN GUM - A well treatment fluid containing borated galactomannan may be used to isolate a productive zone in a well having multiple productive zones. The fluid is particularly useful in treatment of wells containing a mechanical zonal isolation system in the productive zone of interest. The fluid is pumped into the well in a substantially non-hydrated form. The well treatment fluid is therefore highly effective in preferentially sealing or blocking productive zones in the formation since delayed hydration of the fluid may be controlled for up to several hours. The seal may be degraded and a productive zone subjected to re-fracturing by introducing a viscosity reducing agent into the well. | 05-22-2014 |
20140144633 | Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Packs - Methods of treating a subterranean formation including providing a wellbore in a subterranean formation having at least one fracture; providing an expandable cementitious material; introducing the expandable cementitious material into the at least one fracture in the subterranean formation; curing the expandable cementitious material so as to form a cement pack, wherein the curing of the expandable cementitious material expands the expandable cementitious material such that at least one microfracture is created within the at least one fracture in the subterranean formation; and acid-fracturing the at least one fracture in the subterranean formation. | 05-29-2014 |
20140144634 | Methods of Enhancing the Fracture Conductivity of Multiple Interval Fractures in Subterranean Formations Propped with Cement Packs - Methods of treating a wellbore in a subterranean formation having a top portion and a bottom portion, and a middle portion therebetween. The method includes providing a jetting fluid; providing a cement slurry; and providing a breakable gel fluid. Then introducing the jetting fluid into the bottom portion of the wellbore to create or enhance a bottom portion fracture; introducing the jetting fluid into the top portion of the wellbore to create or enhance a top portion fracture; introducing the cement slurry into the top portion fracture; introducing the cement slurry into the bottom portion fracture; and introducing the breakable gel fluid into the wellbore so as to prevent the expandable cementitious material from migrating out of the top portion fracture and bottom portion fracture. The expandable cementitious material is cured so as to form a cement pack, the breakable gel fluid is broken and removed from the subterranean formation. | 05-29-2014 |
20140144635 | Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Pillars - Methods of treating a subterranean formation having at least one fracture including providing a cement slurry comprising an expandable cementitious material and a breakable foamed carrier fluid, wherein the expandable cementitious material is capable of consolidating to form a plurality of expandable cementitious material aggregates and wherein the breakable foamed carrier fluid is capable of coating and isolating the expandable cementitious material aggregates; introducing the cement slurry into the fracture; curing the expandable cementitious material aggregates so as to form a cement pillar within the fracture in the subterranean formation, wherein the curing of the expandable cementitious material aggregates expands the expandable cementitious material aggregates such that at least one microfracture is created within the fracture; breaking the breakable foamed carrier fluid; removing the broken breakable foamed carrier fluid from the subterranean formation; and acid-fracturing the at least one fracture in the subterranean formation. | 05-29-2014 |
20140174736 | Wellbore Servicing Materials and Methods of Making and Using Same - A method of servicing a wellbore in a subterranean formation comprising placing a composition comprising a carrier fluid and a degradable polymer into the subterranean formation wherein the degradable polymer comprises polyimide, allowing the degradable polymer to form a diverter plug at a first location in the wellbore or subterranean formation, diverting the flow of a wellbore servicing fluid to a second location in the wellbore or subterranean formation that is different than the first location; and removing all or a portion of the diverter plug by contacting the diverter plug with a degradation accelerator wherein the degradation accelerator comprises an amino alcohol, an amino alcohol precursor, an organic amine, an organic amine precursor or combinations thereof. A wellbore servicing fluid comprising polysuccinimide wherein the wellbores servicing fluid has a pH of less than about 7. | 06-26-2014 |
20140174737 | Wellbore Servicing Materials and Methods of Making and Using Same - A method of servicing a wellbore in a subterranean formation comprising placing a first wellbore servicing fluid comprising a diverter material into a wellbore, allowing the diverter material to form a diverter plug at a first location in the wellbore or subterranean formation, diverting the flow of a second wellbore servicing fluid to a second location in the wellbore or subterranean formation, and contacting the diverter plug with a third wellbore servicing fluid comprising a degradation accelerator and a phase transfer catalyst under conditions sufficient to form one or more degradation products. A method comprising contacting a diverter material with a phase transfer catalyst under conditions suitable to produce a composite material placing downhole a first wellbore servicing fluid comprising the composite material, and placing downhole a second wellbore servicing fluid comprising a degradation accelerator. | 06-26-2014 |
20140190695 | Methods Using Stimulation-Capable Drill-In and Completion Fluids - Methods comprising providing a drill-in fluid including an aqueous carrier fluid, a surfactant; and a self-degradable filter cake-forming agent which includes a plurality of degradable particulates which are operable to form an acid upon degradation, and a plurality of acid-degradable particulates. Drilling a wellbore through a reservoir section of a subterranean formation with the drill-in fluid, forming a thin internal filter cake within the wellbore from the self-degradable filter cake-forming agent. Releasing an acid derivative from at least a portion of the plurality of degradable particulates, interacting the acid with the filter cake so as to at least partially degrade the acid-degradable particulates therein. Thereby at least partially removing the filter cake allowing quick lift off of the remaining particulates, and producing a hydrocarbon fluid or gas from the subterranean formation. | 07-10-2014 |
20140238674 | Clean Fluid Loss Control Additives - Methods of providing fluid loss control in a portion of a subterranean formation comprising: providing a treatment fluid comprising a base fluid and a plurality of seeds; introducing the treatment fluid into a portion of a subterranean formation penetrated by a well bore such that the seeds block openings in the subterranean formation to provide fluid loss control; and degrading the seeds over time within the subterranean formation. In some methods, the seeds are present in the treatment fluid in an amount of at least about 5 pounds per barrel. In addition, in some methods the seeds are preferably degradable. | 08-28-2014 |
20140251612 | CONSUMABLE DOWNHOLE PACKER OR PLUG - A packer or plug for use in a wellbore includes: a tubular mandrel made from a composite material including a pyrotechnic composition; an expandable seal disposed on an outer surface of the mandrel; and an igniter operable to initiate combustion of the mandrel. | 09-11-2014 |
20140290944 | Zonal Isolation Utilizing Cup Packers - Zone isolation is a leading concern for operators that wish to fluidly treat a well. Typically in an open hole packers hydraulically actuated solid body packers have been are deployed at particular intervals along the wellbore to provide zonal isolation of various formations or portions of a formation. By isolating the various zones valves may be selectively opened or closed to treat a particular zone independently of the remainder of the well. In an improvement over the past procedures a cup style packer that is particularly useful in open hole may now be used. | 10-02-2014 |
20140290945 | METHODS OF ZONAL ISOLATION AND TREATMENT DIVERSION - Methods of treating a subterranean formation penetrated by a well bore, by providing a treatment fluid comprising a blend including a first amount of particulates having a first average particle size between about 3 mm and 2 cm and a second amount of particulates having a second average size between about 1.6 and 20 times smaller than the first average particle size or a second amount of flakes having a second average size up to 10 times smaller than the first average particle size; by introducing the treatment fluid into the well bore; and by creating a plug with the treatment fluid. | 10-02-2014 |
20150021024 | ATMOSPHERE TO PRESSURE BALL DROP APPARATUS - An improved ball drop apparatus including an atmosphere-to-pressure frac ball injection chamber. A ball is first inserted into the atmosphere-to-pressure ball injection chamber from a ball feeding apparatus. The ball is then pushed into a pressure equalization section through a first seal pack. In a preferred embodiment, the pressure equalization section is connected to a pressure equalization apparatus and also to the wellbore through a second seal pack. Once the ball is injected into the pressure equalization section, the pressure equalization apparatus applies pressure, thereby causing the pressure of the pressure equalization section to increase until it reaches close to wellbore pressure. Once the pressures of the pressure equalization section and the wellbore are close, the atmosphere-to-pressure frac ball injection chamber and the frac ball are pushed through the second seal pack and into the wellbore, where the frac ball can be pumped downhole. The atmosphere-to-pressure ball injection chamber is then retracted into the pressure equalization section. The pressure equalization section can then be returned to atmospheric or close to atmospheric pressure by the pressure equalization apparatus. The ball injection chamber is then returned to a ball loading position where it may again be loaded by a ball feeding apparatus. | 01-22-2015 |
20150075791 | Mandrel-less Launch Toe Initiation Sleeve (TIS) - The present invention is a valve tool utilized for hydraulically fracturing multiple zones in an oil and gas well without perforating the cement casing. An oil/gas well completion method involves the use of a valve that is installed as part of the casing string of the well. A mandrel-less casing provides for cement flow within the casing when the valve element is in a closed position and allows for axial flow of fracturing fluid through the cement casing to fracture the formation near the valve when the sleeve is open. The invention disclosed herein is an improved valve used in this process. | 03-19-2015 |
20150083421 | Mandrel-less Launch Toe Initiation Sleeve (TIS) - The present invention is a valve tool utilized for hydraulically fracturing multiple zones in an oil and gas well without perforating the cement casing. An oil/gas well completion method involves the use of a valve that is installed as part of the casing string of the well. A mandrel-less casing provides for cement flow within the casing when the valve element is in a closed position and allows for axial flow of fracturing fluid through the cement casing to fracture the formation near the valve when the sleeve is open. The invention disclosed herein is an improved valve used in this process. | 03-26-2015 |
20150090448 | DOWNHOLE SYSTEM AND METHOD THEREOF - A downhole system including a tubular having a wall with at least one port there through. At least one member arranged to cover the at least one port in a compressed condition thereof. Configured to at least partially displace cement pumped on an exterior of the tubular in a radially expanded condition of the at least one member. Also included is a method of non-ballistically opening ports in a tubular of a downhole system. | 04-02-2015 |
20150090449 | CEMENT MASKING SYSTEM AND METHOD THEREOF - A cement masking system including a tubular having a wall with at least one radial port. At least one swellable member arranged to cover the at least one port. The at least one swellable member configured to at least partially displace cement radially of the tubular during radial expansion of the at least one swellable member. Also included in a method of masking ports in a tubular from cement, | 04-02-2015 |
20150107837 | Open Hole Fracing System - A method of producing petroleum from at least one open hole in at least one petroleum production zone of a hydrocarbon well comprising the steps of locating a plurality of sliding valves along at least one production tubing; inserting the plurality of sliding valves and the production tubing into the at least one open hole; cementing the plurality of sliding valves in the at least one open hole; opening at least one of the cemented sliding valves; removing at least some of the cement adjacent the opened sliding valves without using jetting tools or cutting tools to establish at least one communication path between the interior of the production tubing and the at least one petroleum production zone; directing a fracing material radially through the at least one sliding valve radially toward the at least one production zone; producing hydrocarbons from the at least one petroleum production zone through the plurality of the sliding valves the cement adjacent to which has been removed. | 04-23-2015 |
20150136392 | Multi-zone Intelligent and Interventionless Single Trip Completion - A one trip interventionless method for fracking multiple intervals incorporates a remotely operated passage isolation valve for each interval. A screen backed by a base pipe is provided to route screened production through a shutoff valve before the production reaches the passage in the completion assembly. The shutoff valve is remotely operated as well. The fracking port is associated with a pressure responsive operator such as a j-slot mechanism with a spring return. The j-slot mechanism is behind a rupture disc so that it remains unaffected while other operations are going on in the wellbore. The rupture discs are set at different pressures for the intervals involved. Sequentially, each fracked zone is isolated and the zone above is opened with breaking the rupture disc and applying predetermined number of pressure cycles. The screen valves are remotely operated as needed after the fracking to initiate production from one or more intervals. | 05-21-2015 |
20160145989 | WELL COMPLETION - A well completion method can comprise, in a single trip into a wellbore, the following steps being performed for each of multiple zones penetrated by the wellbore: abrasively perforating the zone with a tubing deployed perforating assembly, fracturing the perforated zone with flow from surface via a well annulus, and then plugging the fractured zone with a removable plug substance, the perforating assembly displacing in the wellbore while the fractured zone is being plugged. Another well completion method can comprise, in a single trip into a wellbore, the following steps being performed for each of multiple zones penetrated by the wellbore: perforating the zone using an abrasive perforator, then displacing the perforator in the wellbore away from the earth's surface, then fracturing the zone, and plugging the fractured zone with a flowable plug substance. | 05-26-2016 |