Class / Patent application number | Description | Number of patent applications / Date published |
166269000 | Fluid injected from longitudinally spaced locations in injection well | 12 |
20090032251 | DRAINAGE OF HEAVY OIL RESERVOIR VIA HORIZONTAL WELLBORE - Systems and methods for drainage of a heavy oil reservoir via a horizontal wellbore. A method of improving production of fluid from a subterranean formation includes the step of propagating a generally vertical inclusion into the formation from a generally horizontal wellbore intersecting the formation. The inclusion is propagated into a portion of the formation having a bulk modulus of less than approximately 750,000 psi. A well system includes a generally vertical inclusion propagated into a subterranean formation from a generally horizontal wellbore which intersects the formation. The formation comprises weakly cemented sediment. | 02-05-2009 |
20090114388 | Equalizing Injection Tool - An equalizing injection wash tool includes a plurality of interconnectable wash tool segments. Each of the segments provides a flow applicator nozzle for transmitting fluid/and or solid from the interior flowbore of the wash tool and into the surrounding formation. Each segment preferably features a plurality of nozzle pipes and nozzles which are oriented about the cross-sectional circumference of the segment in an angularly spaced orientation to provide for a flow pattern that is substantially equalized in an angular manner. In a preferred embodiment, the nozzle pipes have a length that extends into the flowbore of a neighboring wash tool segment. | 05-07-2009 |
20100096127 | FLOW REGULATOR ASSEMBLY - A system for and method of supplying an injection fluid to a well assembly so that the injection fluid flows at a substantially constant flow rate. The fluid can be injected at a single site in the well assembly or multiple sites. A flow control regulator is included that attaches to the well assembly and provides a self adjusting flow control for the fluid being injected. The regulator includes a slidable floating sleeve having an orifice through which the fluid flows. The sleeve includes an inlet port that can register with a fluid supply port to allow the injection fluid to make its way into the sleeve. The fluid exits the sleeve through the orifice to generate a pressure differential across the orifice that in turn exerts a sliding force onto the sleeve. Moving the sleeve misaligns the inlet port and fluid supply port thereby throttling flow through the regulator to a predetermined flow rate. | 04-22-2010 |
20100230096 | PROCESS TO INCREASE THE AREA OF MICROBIAL STIMULATION IN METHANE GAS RECOVERY IN A MULTI SEAM COAL BED/METHANE DEWATERING AND DEPRESSURIZING PRODUCTION SYSTEM THROUGH THE USE OF HORIZONTAL OR MULTILATERAL WELLS - A process to increase the area of microbial stimulation in a process of methane gas recovery in a multi seamed coal bed/methane dewatering and depressurizing production system by first utilizing an underbalanced multilateral drilling technique. At this point in the process one could introduce the microorganisms into the horizontal well bore to achieve a greater area of stimulation of the coal bed than would a vertical well. An even more preferred method would to first drill a series of lateral wells off of the horizontally drilled well bore, so as to increase or maximize the area of coal bed which is being covered. At that point, one would take the steps of what is known in the art of introducing a particular type of microorganism, such as the type disclosed in the '535 patent, which would then be injected via the plurality of lateral bores into the coal bed formation, to maximize the area of penetration, which would include, most, if not all, of the area of the coal bed through the series of lateral wells. After the microbes have been injected into the formation through the lateral wells, one would then undertake these further steps of completing the production steps involved in recovering any methane gas produced according to the process disclosed and claimed herein. The methane gas produced would flow into the series of lateral boreholes through the annulus between the drill string and the carrier string, and the principal borehole would bring it to surface, where the water would be separated from the methane gas to be collected. | 09-16-2010 |
20110042081 | Methods and Apparatuses for Releasing a Chemical into a Well Bore Upon Command - Methods and apparatuses for releasing a chemical in a well bore are disclosed. One apparatus includes a curved member configured for coupling to a casing, and a hollow member is connected to the curved member. A chemical container is disposed, at least in part, within the hollow space, and the hollow member extends at least partially around a hollow space. | 02-24-2011 |
20110056682 | Thermal Insulating Packer Fluid - A method for ensuring the integrity of a well comprises selecting a thermally insulating fluid as a packer fluid, pumping the thermally insulating packer fluid into an annulus of the well and insulating the well by controlling the heat transfer from the production tubing to the outer annuli. Controlling the heat transfer may also mitigate annular pressure buildup and thereby reduce the incidence of casing failure. In one embodiment of the invention, the thermally insulating fluid comprises a silicone-based fluid. | 03-10-2011 |
20110120704 | PRODUCING HYDROCARBON FLUID FROM A LAYER OF OIL SAND - A method of producing hydrocarbons from a layer of oil sand located in a formation comprises creating a plurality of boreholes in the formation, including a first borehole and a second borehole spaced from the first borehole in a selected direction along which the layer of oil sand extends, and creating a cavity in the layer, the cavity being in fluid communication with the first borehole; extending the cavity in the selected direction by operating fluid jetting means via the first borehole to jet a stream of fluid against the cavity wall; when the cavity is in fluid communication with the second borehole, operating the fluid jetting means via the second borehole to jet a stream of fluid against the cavity wall so as to further extend the cavity; and transporting a slurry of fluid and oil sand from the cavity to a processing facility. | 05-26-2011 |
20120247758 | METHOD AND APPARATUS TO TREAT WELL STIMULATION FLUIDS IN-SITU - A method and apparatus for the management of injection and production of well fluids in a subterranean well is described to optimize the use of stimulation fluids to enhance their compatibility with subterranean reservoirs and the surface environment and thereby reducing the damage said fluids induce in subterranean reservoirs and upon flow back to the surface reduce their damage to the environment is described. More specifically, this method is directed to the subterranean treatment of injection fluids. | 10-04-2012 |
20120292025 | SYSTEMS AND METHODS FOR PRODUCING OIL AND/OR GAS - A method for producing oil and/or gas from an underground formation comprising locating a suitable reservoir in a subsurface formation; creating a model of the reservoir; populating the model with laboratory data; modeling the reservoir to determine fluid displacements based on fluids injected and fluids produced; determining an optimum fluid mixture for the fluids to be injected based on a series of sensitivity analyses performed with the model; drilling a first well in the formation; injecting the optimum fluid mixture into the first well; drilling a second well in the formation; and producing oil and/or gas from the second well. | 11-22-2012 |
20130000896 | Basal Planer Gravity Drainage - Systems and methods are provided for producing hydrocarbons from reservoirs. A provided method includes drilling a first horizontal well substantially proximate to a base of a reservoir and drilling a second horizontal well at a horizontal offset from the first horizontal well. Fluid communication is established between the first horizontal well and the second horizontal well through cyclic production processes. A mobilizing fluid is injected through the second horizontal well and fluids are produced from the first horizontal well. | 01-03-2013 |
20140083692 | METHOD FOR CONTROLLING FLUID INTERFACE LEVEL IN GRAVITY DRAINAGE OIL RECOVERY PROCESSES WITH CROSSFLOW - In a method for controlling interface level between a liquid inventory and an overlying steam chamber in a subterranean petroleum-bearing formation, an inflow relationship is developed to predict the vertical position in a gravity field of the interface between the two fluids (liquid and steam) with a density contrast relative to a horizontal producer well. The inflow relationship is applied to producer well completions by designing the completion to raise or lower sand face pressures according to mobility variations over the horizontal length of the well. This pressure distribution will affect liquid levels according to the inflow relationship. The completion can include tubing-conveyed or liner-conveyed flow control devices to create flow network that provides a customized sand face pressure distribution. Axial flow relationships between adjacent locations along the producer well may be modeled in order to develop an axial flow network to facilitate estimation of liquid levels at selected locations. | 03-27-2014 |
20150369023 | WELL INJECTION AND PRODUCTION METHOD AND SYSTEM - A method and system for enhancing petroleum production are provided, in which petroleum is displaced from a fractured formation by selectively injecting fluid into selected fractures in the formation without injecting into the other non-selected fractures. The injected fluid flows out into the fractured formation and enhances recovery from the non-selected fractures. Petroleum is selectively collected from the non-selected fractures. | 12-24-2015 |