Class / Patent application number | Description | Number of patent applications / Date published |
166272600 | Liquid material injected | 22 |
20080257552 | APPARATUS, SYSTEM, AND METHOD FOR IN-SITU EXTRACTION OF HYDROCARBONS - An apparatus, system, and method are disclosed for in-situ extraction of hydrocarbons from a hydrocarbon bearing formation. The system includes a well drilled through a hydrocarbon bearing formation, and a completion unit that places an injection tube near a fluid injection of a target zone and a production tube near a fluid production point of the target zone. The injection tube comprising a tube with an inner diameter between about 1 inch and about 2 inches. The system includes a heat source, and a thermal conduit fluid that delivers heat from the heat source to the target zone. A mixer mixes an oxygen mixture and an injection unit injects the oxygen mixture into the depleted target zone to combust a coke remainder within the target zone. The system further includes a recycling unit configured to circulate a cool gas through the heated target zone to absorb the thermal energy disposed in the heated target zone. | 10-23-2008 |
20080302532 | SYSTEMS AND METHODS FOR PRODUCING OIL AND/OR GAS - A system including a mechanism for recovering oil and/or gas from an underground formation, the oil and/or gas comprising one or more sulfur compounds; a mechanism for converting at least a portion of the sulfur compounds from the recovered oil and/or gas into a carbon disulfide formulation; and a mechanism for releasing at least a portion of the carbon disulfide formulation into a formation. | 12-11-2008 |
20090084548 | RECOVERY OF HYDROCARBONS - A method of bringing hydrocarbons from a well into production by introducing encapsulated bubbles into the fluid in the production string to reduce the hydrostatic pressure holding the hydrocarbons in the reservoir. For reservoirs where the reservoir pressure has been depleted to the point where the reservoir pressure is not sufficient to push a column of hydrocarbons to the surface at an acceptable rate, encapsulated bubbles can be continuously introduced into the production string at a suitable depth to reduce the pressure required to bring hydrocarbons to the surface and allowing the encapsulated bubbles to be recovered and recycled. | 04-02-2009 |
20090260812 | METHODS OF TREATING A HYDROCARBON CONTAINING FORMATION - Methods of generating subsurface heat for treatment of a hydrocarbon containing formation are described herein. Methods include providing water through one or more wellbores to at least a portion of a hydrocarbon containing formation and combusting at least a portion of a fuel stream comprising hydrogen sulfide in the presence of an oxygen source in one or more heaters positioned in one of the wellbores to produce a combustion by-products stream. Heat from the combustion is transferred to a portion of the hydrocarbon containing formation. The combustion by-products stream includes one or more sulfur oxides. Heat of solution is released by contacting at least a portion of the combustion by-products stream with a portion of the water and/or a portion of water in the hydrocarbon containing formation. | 10-22-2009 |
20090266541 | WASTE MATERIAL PROCESSING FOR OIL RECOVERY - An enhanced oil recovery method and apparatus for thermal processing of polymer-based waste to produce organic and inorganic processed materials. The organic and inorganic processed materials are injected as an injection stream into the ground to liberate ground oil. The liberated ground oil is withdrawn from the ground. The injection stream interacts with the ground oil to form a new oil and the new oil including the ground oil is withdrawn from the ground. Thermal processing is done with pyrolysis of waste tires. | 10-29-2009 |
20100000733 | Apparatus and Method for Energy-Efficient and Environmentally-friendly Recovery of Bitumen - The present invention aims at recovering unconventional oil in an environmentally friendly and sustainable way that has the potential of eliminating the need of natural gas currently employed for steam production and power generation. Our invention aims at providing low temperature steam for the stimulation of the formation by means of solar radiation. In addition we propose a novel solution for hydrogen production that does not employ reforming of natural gas. We also illustrate how the use of thermoelectric devices in combination with low temperature steam can be employed to power an electrolysis plant to generate the hydrogen necessary to produce synthetic oil. | 01-07-2010 |
20100089576 | Methods and Apparatus for Thermal Drilling - Methods and apparatus for spalling a geological formation, for example to thermally drill a wellhole, are provided. Such methods may include providing a housing comprising a reaction chamber and a catalyst element held within the reaction chamber, providing at least one jet nozzle, contacting one or more unreacted fluids or solids with the catalyst element, wherein the unreacted fluid or solid is adapted to react over the catalyst element, thus generating a reacted fluid, and emitting the reacted fluid through the at least one nozzle, wherein the at least one nozzle is directed to an excavation site within or on the geological rock formation, thereby creating spalls and/or a reacted rock region. | 04-15-2010 |
20100089577 | Methods and Apparatus for Thermal Drilling - Methods and apparatus for spalling a material, for example to thermally drill a wellhole, are provided. Such methods may include directing a fluid having a temperature greater than about 500° C. above the ambient temperature of the material and less than about the temperature of the brittle-ductile transition temperature of the material to a target location on the surface of the material, wherein the fluid produces a heat flux of about 0.1 to about 50 MW/m | 04-15-2010 |
20100147516 | SYSTEM AND METHOD FOR MINIMIZING THE NEGATIVE ENVIROMENTAL IMPACT OF THE OILSANDS INDUSTRY - A method and system for the use of low quality fuel and solids-rich water, like fine tailings or lime sludge, for extracting bitumen from shallow and deep underground oil sand formations. The method includes the steps of combustion fuel and oxidizing gas, mixing hot combustion gas with solids-rich water under controlled pressure, gasifying the liquid water to steam and solids, removing the solids from the gas phase to generate a solid lean gas, recovering the heat and condensing the steam to generate hot water, mixing the hot water with oilsands ore for extracting bitumen. The solid lean gas is mixed with saturated water to scrub the remaining solids and acid gases and produce saturated steam. The solids-rich saturated water is recycled and gasified by being mixed with the combustion gases, and the saturated steam is condensed to generate heat and condensate for steam generation for use in enhanced oil recovery. | 06-17-2010 |
20100163231 | METHOD AND SYSTEM FOR PRODUCING HYDROCARBONS FROM A HYDRATE RESERVOIR USING AVAILABLE WASTE HEAT - A method and system of producing hydrocarbons from a hydrocarbon containing subterranean hydrate reservoir is disclosed. Waste heat is captured and transferred to a hydrocarbon bearing hydrate formation to dissociate hydrates into natural gas and water. The waste heat can be heat generated from surface facilities such as a Gas To Liquids (GTL) plant, a Liquefied Natural Gas (LNG) plant, an electric or power generation plant, and an onshore or offshore facility producing other conventional or unconventional hydrocarbons from a subterranean reservoir. Alternatively, the waste heat can be obtained from subterranean reservoirs such as hydrocarbon containing producing wells and geothermal wells producing heated water. | 07-01-2010 |
20100218946 | Water Treatment Following Shale Oil Production By In Situ Heating - A method for treating water at a water treatment facility is provided. In one aspect, the water has been circulated through a subsurface formation in a shale oil development area. The subsurface formation may comprise shale that has been spent due to pyrolysis of formation hydrocarbons. The method in one embodiment includes receiving the water at the water treatment facility, and treating the water at the water treatment facility in order to (i) substantially separate oil from the water, (ii) substantially remove organic materials from the water, (iii) substantially reduce hardness and alkalinity of the water, (iv) substantially remove dissolved inorganic solids from the water, and/or (v) substantially remove suspended solids from the water. The method may further includes delivering the water that has been treated at the water treatment facility re-injecting the treated water into the subsurface formation to continue leaching out contaminants from the spent shale. | 09-02-2010 |
20110180256 | CHROME FREE WATER-BASED WELLBORE FLUID - Methods for maintaining the rheology and reducing the fluid loss of chrome-free, aqueous-based wellbore fluids under high temperature-high pressure conditions are disclosed. The method may comprise formulating the chrome-free, aqueous wellbore fluid with an aqueous base fluid, at least one chrome-free viscosifier, at least one chrome-free fluid loss control additive, at least one chrome-free dispersant; and circulating the chrome-free aqueous-based wellbore fluid in a wellbore at temperatures exceeding 300° F. | 07-28-2011 |
20110253371 | DILUENT-ENHANCED IN-SITU COMBUSTION HYDROCARBON RECOVERY PROCESS - A modified process for recovering oil from an underground reservoir using the an in situ combustion process. A diluent, namely a hydrocarbon condensate, is injected within a separate wellbore, or alternatively within said separate wellbore and via tubing in a horizontal wellbore portion, preferably proximate the toe, of a vertical-horizontal well pair, to increase mobility of oil. | 10-20-2011 |
20110290484 | SYSTEMS AND METHODS FOR PRODUCING OIL AND/OR GAS - A system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a composite material, the composite material comprising a plurality of fibers in a matrix, the matrix material comprising a fluorinated polymer or a polyketone, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation. | 12-01-2011 |
20120118565 | Effective Solvent Extraction System Incorporating Electromagnetic Heating - A method of producing hydrocarbons from a subterranean reservoir comprises pre-heating by exposure to electromagnetic radiation from a electromagnetic radiation source, injecting through at least one injection well a solvent into the reservoir to dilute the hydrocarbons contained in the pre-conditioned portion, and producing through at least one production well a mixture of hydrocarbons and solvent. An apparatus for producing hydrocarbons from a subterranean reservoir comprises at least one radio frequency antenna configured to transmit radio frequency energy into a subterranean reservoir, a power source to provide power to the at least one radio frequency antenna, at least one injection well configured to inject a solvent from a solvent supply source into the subterranean reservoir to lower the viscosity of the hydrocarbons, and at least one production well configured to produce a mixture comprising hydrocarbons and solvent from the subterranean reservoir. | 05-17-2012 |
20120132420 | PROCESS FOR MINERAL OIL PRODUCTION USING HYDROPHOBICALLY ASSOCIATING COPOLYMERS - A process for mineral oil production, in which an aqueous formulation comprising at least one water-soluble, hydrophobically associating copolymer is injected through at least one injection borehole into a mineral oil deposit, and crude oil is withdrawn from the deposit having a deposit temperature of 35° C. to 120° C., preferably 40° C. to 90° C., through at least one production borehole, wherein the water-soluble, hydrophobically associating copolymer comprises at least acrylamide or derivatives thereof, a monoethylenically unsaturated monomer having anionic groups and a monoethylenically unsaturated monomer which can bring about the association of the copolymer. | 05-31-2012 |
20130081809 | PROCESS FOR PRODUCING MINERAL OIL FROM AN UNDERGROUND DEPOSIT - A process for producing mineral oil, in which an aqueous flooding medium comprising water, a glucan, urea and optionally surfactants is injected into the mineral oil formation and mineral oil is withdrawn from the formation through at least one production well, wherein the formation has a temperature of at least 60° C. The formulation forms in situ foams in the formation under the influence of the formation temperature. | 04-04-2013 |
20140020891 | WATER INJECTION METHOD FOR ASSISTING IN RECOVERY OF HEAVY OIL - A steam-assisted gravity drainage or cyclic steam injection method for recovering oil from a development region of an underground reservoir, further employing water injection along one or more peripheral side edges of the development region via a horizontal well or wells to thereby bound the development region on at least one side edge thereof, and preferably along two or more side edges, with water to thereby reduce steam loss from the development region and thus reduce steam-to-recovered oil ratio (SOR). The water may be combined with diluents. In a preferred embodiment, the water which is injected into the horizontal well or wells comprises produced water recovered from said reservoir. | 01-23-2014 |
20140054032 | In Situ Retorting and Refining of Hydrocarbons - A method of producing hydrocarbons in situ from a fixed-bed hydrocarbon formation disposed below a ground surface and having a higher permeability zone substantially parallel to, and between a top lower permeability zone and a bottom lower permeability zone. The steps include providing at least one injection well and first and second production wells in the higher permeability zone, injecting a heated thermal-energy carrier fluid (TECF) into the injection well, circulating the carrier fluid through the zone and creating a substantially horizontal situ heating element (ISHE) between the injection well and the production wells for mobilizing the hydrocarbons. | 02-27-2014 |
20140076556 | EFFECTIVE SOLVENT EXTRACTION SYSTEM INCORPORATING ELECTROMAGNETIC HEATING - A method of producing hydrocarbons from a subterranean reservoir comprises pre-heating by exposure to electromagnetic radiation from a electromagnetic radiation source, injecting through at least one injection well a solvent into the reservoir to dilute the hydrocarbons contained in the pre-conditioned portion, and producing through at least one production well a mixture of hydrocarbons and solvent. An apparatus for producing hydrocarbons from a subterranean reservoir comprises at least one radio frequency antenna configured to transmit radio frequency energy into a subterranean reservoir, a power source to provide power to the at least one radio frequency antenna, at least one injection well configured to inject a solvent from a solvent supply source into the subterranean reservoir to lower the viscosity of the hydrocarbons, and at least one production well configured to produce a mixture comprising hydrocarbons and solvent from the subterranean reservoir. | 03-20-2014 |
20160024374 | FERROFLUIDS ABSORBED ON GRAPHENE/GRAPHENE OXIDE FOR EOR - Magnetic materials, such as ferrofluids, are known to produce large amounts of heat per unit volume. Other magnetic materials include iron, iron oxide, iron carbide, iron nitride, cobalt-nickel alloy, iron-platinum alloy, cobalt-platinum alloy, iron-molybdenum alloy, iron-palladium alloy, cobalt ferrite, and combinations thereof. These magnetic materials may be absorbed onto a graphene-like component or may be encapsulated by a graphene-like component to give thermal particles. These thermal particles may in turn be suspended in a carrier fluid such as water and/or brine to give a heat transfer fluid that may be used for the dissipation of heat in downhole and subterranean environments, particularly for enhanced oil recovery (EOR) processes, including, but not necessarily limited to, carbon dioxide (CO | 01-28-2016 |
20160160623 | APPARATUS FOR HYDROCARBON RESOURCE RECOVERY INCLUDING A DOUBLE-WALL STRUCTURE AND RELATED METHODS - A device for hydrocarbon resource recovery from at least one well in a subterranean formation may include a radio frequency (RF) source, a solvent source, and a double-wall structure coupled to the RF source to define an RF antenna within the at least one well to provide RF heating to the subterranean formation. The double-wall structure may absorb heat from adjacent portions of the subterranean formation. The double-wall structure may also include inner and outer walls defining a solvent passageway therebetween coupled to the solvent source. The outer wall may have a plurality of openings therein to eject solvent into the subterranean formation. The double-wall structure may transfer heat to the solvent so that the ejected solvent is in a vapor state. | 06-09-2016 |