Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Separating outside of well

Subclass of:

166 - Wells

166244100 - PROCESSES

166265000 - Separating material entering well

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20080230222Apparatus and a Method of Fragmenting Hard Particles - A method of treating particulate hard materials driven to the surface of a well in a returning well flow in connection with a producing well or well stimulation operations in the petroleum production industry, the method including fragmentation of the hard particles by means of a crushing device, whereupon the fragmented hard particles are turned into a slurry which is then re-injected into an injection well.09-25-2008
20080236822System and method for separating, monitoring and sampling coiled tubing flow back returns - The invention relates to a system and method for separating, and safely monitoring and sampling flow back fluid returns from coiled tubing operations in oil and natural gas wells. The system comprises a flow back tank; one or more gas diffusers; one or more shale shakers; and a chute, which diverts flow from the gas diffusers to a sampling site positioned near the perimeter of the flow back tank. The system also has a volume level indicator on or near the perimeter of the flow back tank. The method comprises piping fluid returns from a wellbore, separating the trapped gases from the fluid returns, directing the degassed fluids to a shale shaker to separate the solids and directing the separated solids and liquids into separate tanks for analysis and reconditioning, if necessary. Cleaned liquids may be recirculated back to the wellbore.10-02-2008
20080245526Fluid-flow system, device and method - Methods, devices, and systems are disclosed for combining fluids of different pressures and flow rates in, for example, gas gathering systems, gas wells, and other areas in which independently powered compressors or pumps are not desired.10-09-2008
20080296018SYSTEM AND METHOD FOR EXTRACTING PETROLEUM AND GENERATING ELECTRICITY USING NATURAL GAS OR LOCAL PETROLEUM - One embodiment is a method for extracting oil from a near-depleted oil well. A portable natural gas, methane, or petroleum reformer is brought to a site of the oil well. A quantity of natural gas, methane, or a portion of the locally produced petroleum and a quantity of water is fed into the reformer. The natural gas, methane, or petroleum is reacted with the water in the reformer to generate a driver gas containing a mixture of hydrogen gas and carbon dioxide gas. The driver gas is compressed to a pressure appropriate for the oil well, the driver gas is injected into the oil well, and the oil is recovered from the near-depleted oil well. In one embodiment, sulfur is first removed from the natural gas or crude petroleum. Another embodiment is a method for generating electricity without greenhouse gas emissions. The driver gas is separated into a substantially hydrogen stream and a substantially carbon dioxide stream prior to injecting the driver gas into the oil well, and the hydrogen stream is used to generate electricity.12-04-2008
20090065202GAS SEPARATOR WITHIN ESP SHROUD - A submersible well pump assembly has a gas separator that separates gas prior to entering into the pump. A shroud encloses a portion of the pump assembly, including the gas separator. The gas separator has gas discharge tubes that extend from it out through the shroud. The gas discharge tubes are tangentially aligned to create a vortex on the exterior of the shroud.03-12-2009
20090078416Water Treatment Method for Heavy Oil Production Using Calcium Sulfate Seed Slurry Evaporation - A process for treating produced water to generate high pressure steam. Produced water from heavy oil recovery operations is treated by first removing oil and grease. Feedwater is then acidified and steam stripped to remove alkalinity and dissolved non-condensable gases. Pretreated produced water is then fed to an evaporator. Up to 95% or more of the pretreated produced water stream is evaporated to produce (1) a distillate having a trace amount of residual solutes therein, and (2) evaporator blowdown containing substantially all solutes from the produced water feed. The distillate may be directly used, or polished to remove the trace residual solutes before being fed to a steam generator. Steam generation in a packaged boiler, such as a water tube boiler having a steam drum and a mud drum with water cooled combustion chamber walls, produces 100 % quality high pressure steam for down-hole use.03-26-2009
20090133872Flow back separators - A flow back separator including a housing including a bore housing for communicating with a solid collection chamber, an inlet port for receiving formation fluid flow, and a helical member disposed within the housing bore for directing formation fluid flow received through the inlet port along a helical path wherein solids within the formation fluid flow are forced towards a wall of the housing bore under centrifugal force.05-28-2009
20090194280METHOD OF CONTROLLING A RECOVERY AND UPGRADING OPERATION IN A RESERVOIR - The present invention is directed to generating a range of petroleum products from bitumen or heavy oil reservoir by installing wells from a combination of surface and underground well-head platforms while controlling carbon dioxide emissions during thermal recovery operations.08-06-2009
20090277632Completion technique and treatment of drilled solids - An onshore oil or gas well is completed with a coiled tubing unit. A completion liquid is circulated through coiled tubing and thereby removing solids from the well. The completion liquid and drilled solids pass into a tank where the solids are removed and the cleansed completion liquid is redelivered into the well. In some embodiments, drilled solids from the completion liquid are dewatered to a suitable extent in the tank and dumped into a bin where they are mixed with cotton motes to sorb any free liquid. In some embodiments, drilled solids from drilling an onshore subterranean well are mixed with cotton motes to sorb free liquid. The mixture of cotton motes and drilled solids are disposed of in a manner consistent with appropriate regulations, as by delivery to a commercial landfill, which may be either privately or municipally owned.11-12-2009
20090277633Treatment of Cesium-Containing Fluids - Cesium solutions are treated in a cavitation device to increase their temperature and facilitate the removal of water from them. The context is normally an oil well fluid or a mining solution. The concentrated solutions can be reused, in the case of oil well fluids, or more easily handled for recovery of the elemental cesium or cesium in the form of a salt. Thermal energy is saved by using the concentrate or the water vapor to heat various streams within the system.11-12-2009
20100025034APPARATUS AND METHOD FOR PROCESSING FLUIDS FROM A WELL - Provided is a system, including a first module (02-04-2010
20100038081METHOD FOR REMOVING SILICA FROM EVAPORATOR CONCENTRATE - A method for removing silica from evaporator concentrate to facilitate disposal of the concentrate. An alkaline earth compound is mixed with the concentrate in a crystallizer. Silica in the concentrate reacts with the alkaline earth compound and precipitates from the concentrate as alkaline silicate complexes. The concentrate having the alkaline earth silicate complexes is directed to a separator where the alkaline earth silicate complexes are separated from the concentrate, producing an aqueous solution and slurry. The slurry is directed to a filter where solids are separated from a filtrate. Both the aqueous solution and the filtrate can be disposed of by deep well injection.02-18-2010
20100044038APPARATUS AND METHOD FOR PROCESSING FLUIDS FROM A WELL - Provided is a system, including a first module (02-25-2010
20100170674Injection well storage of carbon dioxide - A process and apparatus of separating CO07-08-2010
20100224364WATER TREATMENT METHOD FOR HEAVY OIL PRODUCTION - A process for treating produced water to generate high pressure steam. Produced water from heavy oil recovery operations is treated by de-oiling the produced water to provide a de-oiled evaporator feedwater that is fed to an evaporator. The pretreated produced water stream is evaporated to produce (1) a distillate having a trace amount of residual solutes therein, and (2) evaporator blowdown containing substantially all solutes from the de-oiled produced water feed. The distillate may be directly used, or polished to remove the residual solutes therein, before being fed to a steam generator. Steam generation in a once-through steam generator, or in a packaged boiler such as a water tube boiler having a steam drum and a mud drum with water cooled combustion chamber walls, produces high pressure steam for down-hole use.09-09-2010
20100243247SYSTEM, APPARATUS AND PROCESS FOR COLLECTING BALLS FROM WELLBORE FLUIDS CONTAINING SAND - A ball catcher for recovering balls from wellbore fluids containing sand during flow back operations. The ball catcher has a receiving chamber for receiving the wellbore fluids containing sand, a first flow outlet for discharging a portion of the wellbore fluids and sand contained therein, and a diverter for redirecting balls entrained within the wellbore fluids. The redirected balls and a balance of the wellbore fluids also containing sand are received in a ball-retaining chamber. A blocker fit to the ball-retaining chamber retains the recovered balls therein while the balance of the wellbore fluids and sand contained therein is discharged from a second flow outlet and directed to downstream equipment through an auxiliary flow line. The retaining chamber can be isolated allowing the balls to be removed from the ball catcher without disrupting the flow back operation.09-30-2010
20100258307DRILLING COMPOSITION, PROCESS FOR ITS PREPARATION, AND APPLICATIONS THEREOF - The present invention relates to a drilling composition comprising an organic phase having at least one linear or branched, cyclic or non-cyclic, saturated hydrocarbon, at least one ester, water or aqueous phase, and at least one additive.10-14-2010
20100263863Microemulsions Used as Spacer Fluids - Nanoemulsions, miniemulsions, microemulsion systems with excess oil or water or both (Winsor III) or single phase microemulsions (Winsor IV) may be pre-formed and used as one or more fluid pills during hydrocarbon recovery operations after drilling with OBM or SBM. The nanoemulsions, miniemulsions, microemulsion systems with excess oil or water or both or single phase microemulsions remove oil and solids from the well and wellbore surfaces. In one non-limiting embodiment, a single phase microemulsion (SPME) or other pre-formed fluid may be created from a polar phase, a nonpolar phase, an optional viscosifier, and at least one surfactant.10-21-2010
20100319913BIOFILM REMEDIATION OF FRACTURE FLUID - A method of in situ treatment of fracture fluid that is contaminated with a heavy metal may include passing a flow of contaminated fracture fluid through a reactor vessel. The reactor vessel may contain a plurality of biofilm retaining structures. Each of the structures may at least be partially coated with a biofilm. Additionally, the biofilm may include a plurality of bacteria retained in a matrix and the matrix may include DNA, protein and carbohydrates produced by the bacteria.12-23-2010
20100326655Method and Facility for Treating Waste Drilling Mud - A method is provided of recycling and decontaminating oil-based waste drilling mud and cuttings contaminated with oil-based waste drilling mud. A facility for performing the method is also provided. The method includes vaporizing all residual oil and water from mud solids, and recondensing the oil. The mud may be the subject of additional treatment steps before or after the vaporization step (or both before and after the vaporization step). The method produces a solid “soil” product that is free from oil contamination (or is sufficiently decontaminated to allow reuse), an oil product that is fit for reuse, and clean air emissions. A thermal desorber or a soil dryer can be used to efficiently vaporize the oil at low temperature. Optionally the water fraction of the mud can be vaporized, solutes and salts can be captured as evaporite and then be mixed with the soil product. The method has the unique advantage of producing no persistent hazardous waste. The method has the further advantage of requiring no external input of energy if the reclaimed oil is used to provide energy for the process. The method has the further advantage of recycling portions of the drilling mud that would otherwise be subject to disposal.12-30-2010
20110011584Produced water disposal - Offshore hydrocarbon (e.g. oil) production units that produce considerable contaminated water (produced water), are able to repeatedly dispose of the produced water so each production unit requires only a moderate-sized tank to hold the produced water, and most of the tank storage capacity of the production unit can store hydrocarbons. A mobile water-treatment plant is provided on a converted tanker that sails from one production unit to another one, transferring produced water from the oil production units and separating out contaminants as by settling, to leave clean water that can be dumped into the sea and contaminants that cannot be dumped into the sea. The mobile plant occasionally sails to an on-shore facility where it is allowed to dump contaminants.01-20-2011
20110088897INTEGRATED ENHANCED OIL RECOVERY PROCESS - The present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or methane reforming, involving combined capture and recycle of carbon dioxide from both processes.04-21-2011
20110094736Device for extracting at least one type of gas contained in a drilling mud, an analysis arrangement and a related extraction method04-28-2011
20110108270Re-Use of Surfactant-Containing Fluids - The components of surfactant-laden fluids, such as those used in hydrocarbon recovery operations such as for stimulation, e.g. hydraulic fracturing, may be re-used and re-cycled into components for subsequent use in a wide range of similar or different operational fluids. In particular, aqueous fluids gelled with viscoelastic surfactants and having components therein to pseudo-crosslink the elongated VES micelles and for internal breaking may be separated into its component parts by relatively inexpensive methods such as filtration. One filtration method includes contacting the surfactant-containing fluid with a particle pack having particulate additives therein which filter out or extract fine solids from the fluid. In an alternate embodiment the surfactant-laden fluid is a nano- and/or micro-emulsion wellbore cleanup fluid.05-12-2011
20110139451Process for Treating Water in Heavy Oil Production Using Coated Heat Exchange Units - The invention relates to a process for treating a water stream produced in the recovery of heavy oil from geological formations comprising. The process includes a) injecting steam underground into a geological formation containing hydrocarbons and establishing a steam chamber; b) transferring heat from the steam chamber to the formation and mobilizing hydrocarbons for extraction from the formation; c) extracting the mobilized hydrocarbons from the formation and the hydrocarbons forming an emulsion with a portion of condensed water formed from the steam; d) separating mobilized hydrocarbons as a heavy oil product from the hydrocarbon-water emulsion to produce a water stream containing foulants that include residual hydrocarbons and solids; e) passing the water stream through a heat exchange unit comprising at least one tube wherein said the tube has a multi-layer coating comprising a melt flowable copolymer of tetrafluoroethylene adhered to the interior surface or exterior surface of said the tube; and f) removing said foulants from the water stream while altering the temperature of the water stream as the water stream passes through the heat exchange unit; wherein the multi-layer coating provides an anti-stick surface that reduces the deposition of foulants, on the interior or exterior surface of the tube as compared to the surface of the tube without the multi-layer coating being present, so as to avoid loss of efficiency in heat transfer and pluggage of the heat exchange unit.06-16-2011
20110162837Filtration of Dangerous or Undesirable Contaminants - Nanoparticle-treated substrates, such as screens, sand beds or proppant beds, may effectively filter and purify fluids such as waste water or fluids produced from a formation, as well as other liquids. When tiny contaminant particles in a fluid such as waste water flow contact the nanoparticle-treated substrate, the nanoparticles will capture and hold the tiny contaminant particles on the substrate due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces or other associative forces. Coating agents such as alcohols, glycols, polyols, vegetable oil, and mineral oils may help apply the nanoparticles to the surfaces of structures in the filter beds or packs.07-07-2011
20110162838SYSTEM AND METHOD FOR PROPPANT TRANSFER - A method of transferring proppant materials, wherein the method includes providing a first pressurized container (07-07-2011
20110180253METHOD OF PRODUCING GASEOUS AND LIQUID COMPONENTS FROM ONE OR MORE MULTI-PHASE STREAMS AND APPARATUS THEREFOR - The present invention provides a method of producing gaseous and liquid components from one or more multi-phase streams in one or more pipelines and an apparatus therefore, the method comprising at least the steps of: 07-28-2011
20110198080DEBRIS REMOVAL SYSTEM AND METHOD FOR PRESSURE CONTROLLED WELLBORE DRILLING AND INTERVENTION OPERATIONS - A wellbore debris screening system used with controlled annulus pressure wellbore intervention and drilling operations includes a wellbore annulus seal configured to pressure isolate an annular space between a conduit inserted into the wellbore and the wellbore wall. A first screening device is coupled to an output of the annulus seal. second screening device is coupled to the output of the annulus seal. Valves are provided that are operable to selectively divert flow out of the annulus to the first and to the second screening sections.08-18-2011
20110209870GAS FLOW SYSTEM - A gas flow system for removing a liquid from a well bore and allowing for gas production is provided. The gas flow system comprises a casing in the well bore for allowing flow of the liquid and gas; a tubing string in the casing for allowing flow of the liquid and gas; pressure measurement devices for use in determining a rate of liquid influx into the well bore; a casing control valve moveable between various positions ranging from fully open to fully closed for controlling flow through the casing; a tubing control valve moveable between various positions ranging from fully open to fully closed for controlling flow through the tubing; and flow measurement devices for determining the rate of flow through the tubing and the total rate of flow. The system is switchable between a current production phase and an alternate production phase based on the determined rate of liquid influx, a tubing critical velocity and a gas flow rate through the tubing, wherein switching from a current production phase to an alternate production phase results in the either or both of a decrease in liquid build-up in the well bore and an increase in gas production rate and wherein the current production phase differs from the alternate production phase.09-01-2011
20110240288PROCESS AND SYSTEM FOR BLENDING SYNTHETIC AND NATURAL CRUDE OILS DERIVED FROM OFFSHORE PRODUCED FLUIDS - A process and system are described for the processing of gas associated with crude oil production, i.e. associated gas. A separation complex is used to separate produced fluids produced from a hydrocarbon reservoir into crude oil, liquefied petroleum gas, water, and natural gas. At least a portion of the natural gas is converted into synthesis gas in a synthesis gas generator. A combination of a synthesis gas conversion catalysts and hydroconversion catalysts are used in a synthesis gas reactor to convert the synthesis gas into a liquid effluent stream containing liquefied petroleum gas and a synthetic crude oil. The liquefied petroleum gas and synthetic crude oil from the synthesis gas reactor is sent to the separation complex. Liquefied petroleum gas is separated both from the synthetic crude oil and a natural crude oil obtained from the produced fluids. The system and process permits synthetic crude oil to be blended with the natural crude oil producing a blended stabilized crude oil having 2 wt % or more of the synthetic crude oil and with a pour point of 60° C. or less. Use of a common facility for separation operations on the natural crude oil and synthetic crude oil thus reduces capital costs and allows converted associated gases to be shipped with the natural crude oil on a conventional crude oil tanker.10-06-2011
20110247804WASTE PROCESSING SYSTEM - A waste processing system including a first container having an inlet and an outlet, a separator in fluid communication with the first container, and a mechanical degrading device configured to receive an overflow from the separator. Also, a method of processing drilling waste including providing drilling waste to a source, transferring drilling waste from the source to a first container, and pumping drilling waste from the first container to a separator. The method also including receiving an overflow from the separator in a mechanical degrading device, processing the overflow in the mechanical degrading device, and discharging the processed overflow from the mechanical degrading device to a second container.10-13-2011
20110265992Mechanical Mud Bucket and Method - A mechanical mud bucket for collecting drilling fluid from tubular members of a drill string or work string. A first shell member includes a fluid outlet. A second shell member is pivotally attached to the first shell member. A seal mechanism and a mechanical locking component are attached to the first and second shell members. In an engaged position, the mechanical locking component locks the first and second shell members in a closed position such that the seal mechanism seals an inner space of the mechanical mud bucket and an annular space between one or more tubular members and the first and second shell members. A pressure control may be attached to the first or second shell members for maintaining atmospheric pressure within the inner space of the mechanical mud bucket when draining drilling fluid.11-03-2011
20110265993SAND DECANTER - A method for processing hydrocarbons recovered from a subterranean formation is disclosed. The method includes: feeding a stream including water, sand, and heavy hydrocarbons produced from a subterranean formation to a separation vessel; concurrently in the separation vessel: heating the stream components to an elevated temperature to reduce a viscosity of the heavy hydrocarbons; and separating the sand, the heavy hydrocarbon, and the water to form a water fraction, a hydrocarbon fraction, and a sand fraction comprising sand and at least one of water and heavy hydrocarbons; and recovering the water fraction from the separation vessel; recovering the hydrocarbon fraction from the separation vessel; and withdrawing the sand fraction from the separation vessel. Also disclosed are apparatus suitable for performing the above described method.11-03-2011
20110297373WELLBORE STRENGTHENING MATERIAL RECOVERY - A wellbore strengthening material collection system including a vibratory separator having a top deck, a middle deck, and a bottom deck, and also including a collection trough coupled to at least one of the decks and configured to receive wellbore strengthening materials from the at least one of the decks. Additionally, a collection trough including a body having an inlet and an outlet, an angled surface disposed within the body and at least on extension surface extending form the body and configured to secure the collection trough to a vibratory separator.12-08-2011
20120012309Flow Back Recovery System - A system and method for processing flow back from an oil or gas well after a fracturing or other well treatment process includes a first trailer having a high pressure filter, a sand separator, and a choke manifold and a second trailer including a gas separator and holding tanks for water and oil. Each trailer may be equipped with a drip or catch pan to confine any leakage of liquid that may occur.01-19-2012
20120012310APPARATUS AND METHODS FOR DEPLOYING EQUIPMENT AT A WELLSITE - A system for transporting and deploying a natural gas processing system comprises a base. In addition, the system comprises a plurality of natural gas processing units mounted to the base. Further, the system comprises a plurality of jacking units attached to the base and configured to raise and lower the base. Each jacking unit comprises a post, an upper lift member moveably coupled to the post, a lower lift member moveably coupled to the post, and a pair of actuators. Moreover, each actuator has an upper end coupled to the upper lift member and a lower end coupled to the lower lift member.01-19-2012
20120024525FRACTURING FLUID WATER REUSE SYSTEM AND METHOD - Methods of processing a fluid recovered from an oil or gas extraction operation for reuse in a hydraulic fracturing fluid are described. The methods include providing an amount of a produced fluid composition containing iron and suspended solids and controlling at least one of the conductivity, iron content, oxidative strength, and pH of the composition, such that Fenton's reagent is formed in situ. Also described are hydraulic fracturing fluids produced using fluid recovered from an oil or gas production process and treated in accordance with the methods described herein as well as systems for preparing a hydraulic fracturing fluid having, as a fluid source, fluid recovered from an oil or gas production process that has been treated in accordance with the methods described herein.02-02-2012
20120067569Well De-Liquefying System and Method - De-liquefying a well includes a steady state de-liquefying cycle which includes an initial step of pressurising the gas with a compressor. In an example embodiment, gas is delivered into the well down an outer tube. The gas displaces liquid within the well by pushing the liquid within tubes up another tube, as a liquid slug, to the surface. A sensor operates to sense the arrival of the liquid. A controller interrogates the sensor to determine whether a slug of liquid has arrived. If not, gas is continued to be delivered into the well. When the controller determines via the sensor that a slug of liquid has arrived, the controller operates to shut the delivery of gas to the well. This may be done either immediately upon detection of the slug or at some predetermined delay thereafter. To shut down the delivery of gas to the well, the controller opens a valve (in the event it was shut) to allow the compressor to discharge to a sales line. The controller also closes a valve and opens another valve to relieve pressure within the outer tube to the separator pressure. The controller then idles for a prescribed time delay before recommencing the cycle.03-22-2012
20120080185DRILLING WASTE MANAGEMENT SYSTEM - A mobile drilling waste management system including a trailer having at least one centrifuge and a solids catch tank receiving solids separated from drilling fluid by one or more of the centrifuges. And a method of reclaiming drilling fluid including pumping drilling fluid contaminated with solids onto a trailer, separating the contaminant solids from the drilling fluid with at least one centrifuge located on the trailer, directing the contaminant solids to a solids catch tank located on the trailer, and pumping the drilling fluid off of the trailer.04-05-2012
20120080186APPARATUS AND SYSTEM FOR PROCESSING SOLIDS IN SUBSEA DRILLING OR EXCAVATION - An apparatus, system and method is disclosed for processing geological solids or wellbore cuttings generated by excavation or drilling under a body of water. An apparatus for processing solids in association with a riser may employ a solids processing apparatus having a central cavity that is substantially free of mechanical obstructions. The central cavity may be positioned in-line with the riser. The apparatus may be adapted for receiving solids within the central cavity and reducing the particle size of the solids by action of a cutter assembly which is positioned outside of the central cavity. The cut and processed solids may be pumped to the surface of the water.04-05-2012
20120138293Viscous Oil Recovery Using A Fluctuating Electric Power Source and A Fired Heater - Methods for recovering viscous oil include receiving electrical power from an electrical grid fed by at least one fluctuating electricity supply. The methods also include using at least a portion of the received electrical power to heat a first fluid stream using an electrical heater. The methods also include heating a second fluid stream with a fired-heater using a combustible fuel. The methods further include using both the first and second heated fluid streams to aid oil recovery. In accordance with these methods, the heat output of the electrical heater is adjusted during production operations to at least partially match an estimated mismatch between electrical power supply from and demand on the grid. At the same time, the heat output of the fired-heater is adjusted to at least partially compensate for fluctuations in the electrical heater heat output.06-07-2012
20120168154USE OF GAS-SEPARATION MEMBRANES TO ENHANCE PRODUCTION IN FIELDS CONTAINING HIGH CONCENTRATIONS OF HYDROGEN SULFIDES - A method and system for processing produced fluids from a subterranean reservoir is disclosed. The system comprises: 07-05-2012
20120168155MULTISTAGE SEPARATOR VESSEL FOR CAPTURING LPGs - A method of recovering liquid petroleum gases (LPGs) from a wellbore includes: performing a well treatment operation by injecting the LPGs into the wellbore to increase the wellbore pressure; flowing a fluid stream from the wellhead into a separation vessel, the fluid stream comprising the LPGs; reducing the pressure of the fluid stream from the wellbore pressure to a separation vessel pressure, the fluid stream in the separation vessel comprising the LPGs in liquid form and in vapour form; separating the vapour form from the liquid form; transferring the liquid form of the LPGs to a pressure vessel; and passing the vapour form through a condenser to condense the vapour form, and depositing the condensed vapour form into the pressure vessel.07-05-2012
20120168156SLURRIFICATION PROCESS - A system for slurrifying drill cuttings including a cuttings dryer, a pump, and a transfer line fluidly connecting the cuttings dryer and the pump, the transfer line having a fluid inlet for receiving a fluid. Furthermore, the system for slurrifying drill cuttings including a storage vessel fluidly connected to the pump for storing a slurry. Additionally, a method for slurrifying drill cuttings including drying drill cuttings in a cuttings drying to produce dry cuttings and combining a fluid with the dry cuttings to produce a slurry. Furthermore, the method includes mixing the slurry and the dry cuttings in a mixing pump and transferring the slurry to a storage vessel.07-05-2012
20120168157METHOD OF MAKING PURE SALT FROM FRAC-WATER/WASTEWATER - The present invention relates to a method for making pure salt comprises recapturing post-drilling flowback water from hydro-fracturing; removing oil from the flowback water; filtering the flowback water using an ultra filter with a pore size of about 0.1 microns or less to remove solid particulates and large organic molecules, such as benzene, ethylbenzene, toluene, and xylene, from the water; concentrating the flowback water to produce a brine that contains from about 15 wt % to about 40 wt % of salt relative to the total weight of the flowback brine; performing one or more chemical precipitation process using an effective amount of reagents to precipitate out the desired high quality commercial products, such as, barium sulfate, strontium carbonate, calcium carbonate; and crystallizing the chemically treated and concentrated flowback brine to produce greater than 99.5% pure salt products, such as sodium and calcium chloride.07-05-2012
20120193093Modular Transportable System For SAGD Process - A transportable modular process for exploiting a remote heavy oil resource or the like using steam assisted gravity drainage technology or the like. Said process comprising transportable preassembled and commissioned modules which when interconnected adjacent said remote heavy oil resource provide the ability to exploit said heavy oil resource or the like. Each module being preassembled and commissioned at the time of manufacture with the necessary piping and electrical wiring and other essential equipment for each module prior to being transported to adjacent the resource. Each module being, when transported to adjacent said resource, able to be readily interconnected with other process modules to enable an entire SAGD process or the like to be constructed adjacent said resource.08-02-2012
20120261119METHOD AND APPARATUS FOR UTILIZING CARBON DIOXIDE IN SITU - A system and method for cracking, hydrogenating and extracting oil from underground deposits is presented. A system includes injecting carbon dioxide and syngas into a deposit of oil under the ground to crack and hydrogenate the heavy oil to produce upgraded oil with a reduced density and reduced viscosity. The carbon dioxide acts as a pressurization agent to further reduce the viscosity of the heavy oil. The method transports the reduced density and reduced viscosity oil aboveground. The carbon dioxide is left underground after the reduced viscosity oil is transported aboveground.10-18-2012
20120318504IN SITU EXTRACTION OF HYDROCARBONS FROM HYDROCARBON-CONTAINING MATERIALS - Hydrocarbon-containing organic matter is extracted from a hydrocarbon-containing material that is a viscous liquid, liquid or gaseous fossil fuel material. A turpentine liquid is contacted with a hydrocarbon-containing material in-situ in an underground formation containing the fossil fuel material to form an extraction mixture so as to extract hydrocarbon-containing organic matter into the turpentine liquid and form an extraction liquid. The extraction liquid is removed from the formation, the extraction liquid including the turpentine liquid containing the extracted hydrocarbon-containing organic matter. The extracted hydrocarbon-containing organic matter is separated from a residual material not extracted.12-20-2012
20120325469PROCESS AND SYSTEM FOR TREATING PRODUCED WATER AND FLOWBACK WATER FROM OIL AND GAS OPERATIONS - A system and method for treatment of flowback water and produced water at an oil or gas wellhead includes a modular treatment facility that may be installed at a well site. The modular treatment facility includes separate and interchangeable modules that remove undesirable contaminants. The modules may be removed and replaced with similar modules when they are no longer effective at removing the contaminants. The spent modules may be transported to a regeneration center to be regenerated and transported back to a modular treatment facility.12-27-2012
20130025857Preserving oil gravity - Volatile organics in newly produced oil and gas, and/or condensates and distillates from produced oil and gas, are treated to depress vapor pressure to preserve light hydrocarbons in them when they are in storage vessels. The loss of volatile organics during storage of high gravity oil is minimized by forming a flowable or pumpable gel in the high gravity oil, (and/or condensates and distillates), as they are introduced to a storage vessel. The gel-former may comprise a phosphate ester of one or more low molecular weight alcohols, and a crosslinker including a source of iron or aluminum. Although the gels are flowable and pumpable, they can be broken for transportation from the production site or at another desirable time, returning the hydrocarbon product to its original properties.01-31-2013
20130062060Treatment for Recycling Fracture Water - Gas and Oil Recovery in Shale Deposits - A method and apparatus for hydrocarbon recovery and/or treatment of frac water includes introducing a volume of water into a formation, recovering the introduced water, with the recovered introduced water further comprising suspended hydrocarbon product. The recovered liquid is treated to remove substantial amounts of the suspended hydrocarbon product, provide the treated recovered liquid with a ORP in a range of 150 mv to 1000 mv, and partially desalinated, and is either re-introduced as treated recovered liquid with the ORP into a formation to assist in recovery of additional hydrocarbon deposits in the formation, or is stored to reduce the ORP and then subsequently discharged into surface waters.03-14-2013
20130068456SYSTEMS AND METHODS FOR SEPARATING OIL AND/OR GAS MIXTURES - A system for producing oil and/or gas from an underground formation comprising a well above the formation; a mechanism to inject an enhanced oil recovery formulation into the formation, the enhanced oil recovery formulation comprising water and a solvent; a mechanism to produce the water, solvent, oil, and gas from the formation; a separator to separate the oil, water, and a first portion of the solvent from the gas and a second portion of the solvent; and an absorption tower to expose the gas and the second portion of the solvent to water to remove the second portion of the solvent from the gas.03-21-2013
20130092373SYSTEM, APPARATUS AND METHOD FOR DELIQUEFYING PRODUCED FLUIDS FROM A WELL - An apparatus, system, and method are provided for deliquefying a produced fluid being produced from a gas well. The apparatus can be a nozzle configured to be disposed in a production tube extending from a subsurface gas reservoir to a surface location and configured to provide a pathway for transmission of the produced fluid from the reservoir to the surface location. The nozzle generally can define a first end for receiving the produced fluid from the reservoir, a second end distal to the first end, and an inner surface extending between the ends. The inner surface can define an inwardly tapered inlet portion at the first end, an outwardly tapered outlet portion proximate the second end, and a venturi neck portion between the inlet and outlet portions. The nozzle can be configured to reduce the pressure of the produced fluid and thereby deliquefy the produced fluid passing therethrough.04-18-2013
20130186622BACKFLOW COLLECTION SYSTEM AND METHOD FOR RECLAIMING THE SAME - Provided is a backflow collection system that includes a collection vessel having an upper section and a lower section, the collection vessel having a side opening configured to receive backflow from an oil/gas well, as well as a discharge port proximate an upper end of the upper section configured to discharge pressurized gas from the collection vessel. The backflow collection system may further include an auger coupled proximate the lower section of the collection vessel, the auger configured to receive solid and liquid matter from a bottom opening in the lower section, and when elevated remove at least a portion of the solid and liquid matter from the collection vessel, the collection vessel designed such that when fluid is contained therein it acts as a liquid/gas seal to prevent the pressurized gas from exiting through the bottom opening in the lower section of the collection vessel.07-25-2013
20130206404METHOD OF TREATING FLOWBACK FLUID - A method of treating flowback fluid comprising: introducing the flowback fluid into a first stage vertical separator to produce a first gas stream, a liquid stream, and a solids stream; passing the first gas stream from the first stage vertical separator to a sales line; passing the liquid stream from the first stage vertical separator to a second stage horizontal separator with the pressure in the second stage horizontal separator being less than the pressure in the first stage vertical separator but greater than atmospheric pressure to produce a second gas stream, a water stream; and a liquid hydrocarbon stream; passing the second gas stream from the second stage horizontal separator to a combustor or flare nozzle; passing the water stream from the second stage horizontal separator to a water storage tank; and passing the liquid hydrocarbon stream from the second stage horizontal separator to a liquid hydrocarbon storage tank.08-15-2013
20130213649WATER TREATMENT IN AT LEAST ONE MEMBRANE FILTRATION UNIT FOR ENHANCED HYDROCARBON RECOVERY - A water treatment method includes: 08-22-2013
20130220605NON-HYDRAULIC FRACTURING AND COLD FOAM PROPPANT DELIVERY SYSTEMS, METHODS, AND PROCESSES - Methods and systems of fracturing subterranean formations are provided comprising pumping metacritical phase natural gas into a subterranean formation to create or extend one or more fissures in the formation. Methods and systems may further comprise maintaining or increasing pressure of the metacritical phase natural gas in the formation by pumping more metacritical phase natural gas into the fissures to hold the fissures open. Methods and systems may further comprise delivering a proppant into the subterranean formation. Disclosed methods and systems may be used to extract hydrocarbons from subterranean formations without the use of liquids. Methods and systems of delivering proppant comprise providing a non-aqueous liquid, adding a surfactant to the non-aqueous liquid, adding a proppant to the non-aqueous liquid to form a non-aqueous liquid, surfactant and proppant stream, pumping to pressure the non-aqueous liquid, surfactant and proppant stream, using pressurized natural gas to energize the non-aqueous liquid, surfactant and proppant stream, and delivering the energized non-aqueous liquid, surfactant and proppant stream into a subterranean formation. Methods of recovering proppant delivery liquid are also provided.08-29-2013
20130228329Oil Thinning Compositions And Retrieval Methods - The present invention relates to compositions of plant oil-based biodegradable crude oil thinning fluids having a performance especially suitable to reducing crude oil viscosity in extraction and retrieval operations.09-05-2013
20130228330METHODS OF FRACTURING WITH AND PROCESSING LPG BASED TREATMENT FLUIDS - A method of processing liquefied petroleum gas used in a treatment fluid previously injected into a hydrocarbon reservoir is disclosed, the method comprising: recovering at least a portion of the treatment fluid from the hydrocarbon reservoir to produce recovered treatment fluid; and separating liquefied petroleum gas in the form of a gas or liquid from the recovered treatment fluid using a separator. An apparatus for processing liquefied petroleum gas used in a treatment fluid previously injected into a hydrocarbon reservoir is also disclosed, the apparatus comprising: a separator; a recovery line for recovering treatment fluid from the hydrocarbon reservoir, the recovery line connected to supply recovered treatment fluid to the separator, the separator being to separate a liquefied petroleum gas portion in gas or liquid form from the recovered treatment fluid.09-05-2013
20130228331Method For Using Electrocoagulation in Hydraulic Fracturing - A method of improving natural gas release from a well via an enhanced hydraulic fracturing operation. The method includes capturing or retrieving the flow back from the well following the fracturing operation. The flow back or other source water is introduced to an electrocoagulation (“EC”) treatment process. EC treatment separates the water from other fracturing fluid components in the flow back and also removes bacteria and other contaminants. Thereafter, the EC-treated fluid is recycled for subsequent fracturing operations. The process may also be used to treat all source water, including fresh water delivered to the well before it is used as a fracturing fluid.09-05-2013
20130233540SYSTEM, APPARATUS AND PROCESS FOR COLLECTING BALLS FROM WELLBORE FLUIDS CONTAINING SAND - A ball catcher for recovering balls from wellbore fluids containing sand during flow back operations. The ball catcher has a receiving chamber for receiving the wellbore fluids containing sand, a first flow outlet for discharging a portion of the wellbore fluids and sand contained therein, and a diverter for redirecting balls entrained within the wellbore fluids. The redirected balls and a balance of the wellbore fluids also containing sand are received in a ball-retaining chamber. A blocker fit to the ball-retaining chamber retains the recovered balls therein while the balance of the wellbore fluids and sand contained therein is discharged from a second flow outlet and directed to downstream equipment through an auxiliary flow line. The retaining chamber can be isolated allowing the balls to be removed from the ball catcher without disrupting the flow back operation.09-12-2013
20130240206EXTRACTION OF HYDROCARBONS FROM HYDROCARBON-CONTAINING MATERIALS AND/OR PROCESSING OF HYDROCARBON-CONTAINING MATERIALS - A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.09-19-2013
20130248175METHOD FOR RECOVERING HYDROCARBON FLUIDS USING A HYDRAULIC FRACTURING PROCESS - A method for recovering and treating hydrocarbon fluids using a hydraulic fracturing process wherein a fluid stream containing liquid or gaseous hydrocarbon species or both, produced water, suspended solids, and dissolved contaminants is recovered from a well. and hydrocarbon species are separated from the fluid stream to produce a second fluid stream comprising liquid water, which is then directed to a filter medium and essentially all of the second fluid stream passes through the medium to produce a permeate stream and a filter cake, and the filter cake is separated from the medium and disposed of separately.09-26-2013
20130255941MOBILE WATER TREATMENT AND METHOD - A system for treating water from oil and gas drilling operations at a well site includes a mobile treatment facility that may be installed at a well site. The mobile treatment facility includes a plurality of treatment tanks and a controller for controlling the treatment.10-03-2013
20130292113SYSTEM, APPARATUS AND PROCESS FOR COLLECTING BALLS FROM WELLBORE FLUIDS CONTAINING SAND - A ball catcher for recovering balls from wellbore fluids containing sand during flow back operations. The ball catcher has a receiving chamber for receiving the wellbore fluids containing sand, a first flow outlet for discharging a portion of the wellbore fluids and sand contained therein, and a diverter for redirecting balls entrained within the wellbore fluids. The redirected balls and a balance of the wellbore fluids also containing sand are received in a ball-retaining chamber. A blocker fit to the ball-retaining chamber retains the recovered balls therein while the balance of the wellbore fluids and sand contained therein is discharged from a second flow outlet and directed to downstream equipment through an auxiliary flow line. The retaining chamber can be isolated allowing the balls to be removed from the ball catcher without disrupting the flow back operation.11-07-2013
20130299166SOLIDS WASTE, SOLIDIFICATION MATERIAL MIXING AND CONVEYANCE UNIT - A system for processing solids may include a solids mover configured to receive the solids from the separator and convey the solids to at least one disposal container and a solidification material applicator configured to apply a solidification material to the solids in the solids mover. A related method includes conveying the solids from the separator to at least one disposal container using a solids mover and applying the solidification material to the solids in the solids mover using a solidification material applicator.11-14-2013
20130306310PIPELINE REACTION FOR REMOVING HEAVY METALS FROM PRODUCED FLUIDS - A method for simultaneously transporting and removing trace amount levels of heavy metals from produced fluids such as crude oil, with the injection of a fixing agent into the pipeline for use in transporting the produced fluid. A sufficient amount of the fixing agent is injected into the pipeline containing the produced fluid and a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate or soluble complexes in the dilution. The dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.11-21-2013
20130306311PROCESS, METHOD, AND SYSTEM FOR REMOVING MERCURY FROM FLUIDS - Trace amount levels of non-volatile mercury in crude oil are reduced by contacting the crude oil with a water stream containing at least a monatomic water-soluble sulfur species such as sulfides and hydrosulfides. The non-volatile mercury is extracted into the water phase forming a mercury rich wastewater, yielding a treated crude oil having at less than 50% of the original non-volatile mercury level. The wastewater can disposed or recycled by injection into a reservoir. In one embodiment, the water stream consists essentially of produced water.11-21-2013
20130306312PROCESS, METHOD, AND SYSTEM FOR REMOVING MERCURY FROM FLUIDS - Trace levels of mercury in a natural gas are reduced by scrubbing the natural gas in an absorber with an aqueous solution comprising a water-soluble sulfur compound. The water-soluble sulfur compound reacts with a least a portion of the mercury in the natural gas to produce a treated natural gas with a reduced concentration of mercury, and a mercury containing sulfur-depleted solution which can be disposed by injection into a (depleted) underground formation. The produced water extracted with the natural gas from the underground formation can be recycled for use as the scrubbing solution. In one embodiment, a fresh source of water-soluble sulfur compound as feed to the absorber can be generated on-site by reacting an elemental sulfur source with a sulfur reagent in produced water.11-21-2013
20140041868METHOD AND APPARATUS FOR DRILLING AND COMPLETION FLUID SEPARATION - A method and apparatus for separating drilling or completion fluids is described. The apparatus may include a fluid container that is operable to at least temporarily contain a drilling or completion fluid. The fluid container may have an inlet port and at least one outlet port. The apparatus may further include an excitation element. The excitation element may be operable to impart a pre-determined vibratory force on the drilling or completion fluid within the fluid container.02-13-2014
20140048258DRILLING COMPOSITION, PROCESS FOR ITS PREPARATION, AND APPLICATIONS THEREOF - The present invention relates to a drilling composition comprising an organic phase having at least one linear or branched, cyclic or non-cyclic, saturated hydrocarbon, at least one ester, water or aqueous phase, and at least one additive.02-20-2014
20140069641INTEGRATION OF VISCOUS OIL RECOVERY PROCESSES - The present disclosure relates generally to the integration of at least two viscous oil recovery processes (VORPs), at least one of which is a solvent-dominated recovery process (SDRP). Integration of the SDRP and the VORP may be achieved through at least one of: solvent, heat, a production stream, and a viscous oil reservoir.03-13-2014
20140076553UPSTREAM-DOWNSTREAM INTEGRATED PROCESS FOR THE UPGRADING OF A HEAVY CRUDE OIL WITH CAPTURE OF CO2 AND RELATIVE PLANT FOR THE EMBODIMENT THEREOF - The present invention relates to an upstream-downstream integrated process for the upgrading of a heavy crude oil with the capture of CO03-20-2014
20140102699Defoaming Agent Compositions and Methods of Making and Using Same - A method of servicing a wellbore in a subterranean formation comprising placing a foamed wellbore servicing fluid into a wellbore; flowing the foamed wellbore servicing fluid back to the wellbore surface; and contacting the foamed wellbore servicing fluid with an immobilized defoaming agent structure comprising an inert substrate and a defoamer. A system comprising a foamed wellbore servicing fluid in contact with a de-foaming structure, wherein the de-foaming structure comprises a defoamer covalently bonded to an inert substrate.04-17-2014
20140110109DIRECT STEAM GENERATION OF BOILER BLOWDOWN - Systems and methods generate steam from produced water by passing the produced water through first and second steam generators coupled together. The first steam generator produces wet steam in which a liquid effluent with impurities of the produced water passes to the second steam generator. The second steam generator combusts fuel and oxidant in direct contact with the liquid effluent. The first and second steam generators limit fouling and waste while providing a combined steam output that may include combustion products from only the second steam generator.04-24-2014
20140231080IN-SITU ARTIFICIAL PRESSURIZATION OF A WELL WITH CARBON DIOXIDE RECYCLING TO INCREASE OIL PRODUCTION - Described herein are systems and methods that utilize bicarbonate and acid to form carbon dioxide in a well (e.g., an oil well) to increase pressure in the well to facilitate production of oil and other resources, such as hydrocarbons, from the well. The well can be a closed system that facilitates absorption of the carbon dioxide into the oil resource. After the carbon dioxide is absorbed within the oil, the oil containing the carbon dioxide can be produced by the well. The carbon dioxide can be recycled after the resource is mined from the well to create bicarbonate that subsequently can be used with acid to facilitate the production from the well.08-21-2014
20140262253PROCESS FOR RECOVERING OIL AND TREATING RESULTING PRODUCED WATER WITH CERAMIC MEMBRANES - A method of recovering oil from an oil well includes recovering an oil-water mixture from the oil well and separating produced water from the oil-water mixture. Thereafter, the produced water is directed through a ceramic membrane that removes free oil and emulsified oil from the produced water. The method or process further includes cleaning the ceramic membrane in online and offline modes. In the offline mode, cleaning is achieved by periodically backflushing the ceramic membrane with an aqueous media having a pH of 13 or greater and a temperature of 60° C. or greater. Further, the ceramic membrane is cleaned in the offline mode by applying the following operations. In one or more clean-in-place operations, an aqueous alkaline media at a pH of 13 or higher and a temperature of 60° C. or higher is directed through the ceramic membrane. In one or more clean-in-place operations, the ceramic membrane is also cleaned with an aqueous acidic media that contains dissolved citric acid. Finally, in one or more clean-in-place operations, a liquid hydrocarbon is directed through the ceramic membrane.09-18-2014
20140262254OIL RECOVERY PROCESS INCLUDING TREATING PERMEATE FROM A CERAMIC MEMBRANE TO ENHANCE OIL RECOVERY - A process for recovering oil is provided. The process entails recovering an oil-water mixture from an oil-bearing formation. Next, the process entails separating oil from the oil-water mixture and producing produced water having hardness and other scale-forming compounds, suspended solids, free oil and emulsified oil. A pre-treatment process is undertaken to remove hardness and other scale-forming compounds. This entails precipitating hardness and other scale-forming compounds. After the precipitation of hardness and other scale-forming compounds, the produced water is directed to a membrane separation unit for filtering the produced water and producing a retentate having suspended solids, hardness and other scale-forming compounds, free oil and emulsified oil. The membrane separation unit also produces a permeate stream substantially free of hardness and other scale-forming compounds, suspended solids, free oil and emulsified oil. Thereafter, the permeate stream is chemically treated to enhance the recovery of oil in the oil-bearing formation. After treating the permeate stream from the membrane separation unit, the treated permeate is injected into the oil-bearing formation.09-18-2014
20140305639METHOD AND APPARATUS FOR GENERATING STEAM FOR THE RECOVERY OF HYDROCARBON - The present invention provides a method of generating steam for the recovery of hydrocarbon from a hydro-carbon producing system comprising: (i) generating supercritical steam from water; (ii) converting said supercritical steam to a subcritical steam; and (iii) injecting said subcritical steam into said system.10-16-2014
20140318772METHOD AND APPARATUS FOR CONTROLLING THE FLOW OF WELLBORE RETURNS - A method and apparatus to regulate the down-hole hydrostatic pressure in a wellbore are provided which depend on regulating the resistance to the flow of wellbore returns produced by the wellbore. The resistance may be provided by the internal gas pressure in a gas/liquid separator receiving the flow of wellbore returns, where the internal gas pressure is regulated by an adjustable back pressure valve and a gas source. Alternatively or in addition, the resistance may be provided by a pump receiving the flow of wellbore returns, where the resistance of the pump is regulated by adjusting the speed of the pump.10-30-2014
20140367095CHEMICAL TREATMENT FOR ORGANIC FOULING IN BOILERS - Methods and systems relate to generating steam from water that contains dissolved organic compounds. The methods mix a polymerization inhibitor with the water prior to feeding the water into a steam generator. The polymerization inhibitor limits coupling of the dissolved organics under boiler conditions to mitigate fouling issues within the boiler.12-18-2014
20150292313APPARATUS, SYSTEM AND METHOD FOR SEPARATING SAND AND OTHER SOLIDS FROM OIL AND OTHER FLUIDS - An apparatus comprising one or more screens which in use eliminates sand and/or fluid slugs from blocking at a screen by placing at least the screen in an elevated secondary chamber, configured to prevent sand, fluid slugs and the like from accumulating around the screen.10-15-2015
20150345277OIL RECOVERY PROCESS INCLUDING ENHANCED SOFTENING OF PRODUCED WATER - A process is provided for treating produced water resulting from an oil recovery operation. Produced water is subjected to a softening process wherein a caustic or other softening reagent is added to the produced water to increase the pH of the produced water. Downstream of softening, there is provided an evaporator for evaporating at least a portion of the produced water and producing steam and a concentrated brine. At least a portion of the concentrated brine is recycled upstream of the evaporator and mixed with the produced water and the softening reagent to enhance the softening process.12-03-2015
20150345278OIL RECOVERY PROCESS INCLUDING A HIGH SOLIDS CRYSTALLIZER FOR TREATING EVAPORATOR BLOWDOWN - An oil recovery process is provided where an oil-water mixture is recovered from an oil-bearing formation. Oil is separated from the oil-water mixture to yield produced water. The produced water is typically subjected to a pre-treatment process. After pre-treatment, the produced water is directed to an evaporator that evaporates at least some of the produced water and produces steam and an evaporator blowdown. The evaporator blowdown is directed to a dual stage crystallizer that concentrates the evaporator blowdown.12-03-2015
20160003024ENHANCED OIL RECOVERY FROM A CRUDE HYDROCARBON RESERVOIR - The invention relates to a method and a system for recovery of oil from a crude hydrocarbon reservoir. A synthesis gas from natural gas, and then liquid hydrocarbon or liquid oxygenate is produced from said synthesis gas. The liquid hydrocarbon or liquid oxygenate is then passed into said crude hydrocarbon reservoir to provide a crude hydrocarbon mixture, and the crude hydrocarbon mixture is withdrawn from said reservoir.01-07-2016
20160040522PRODUCTION OF INJECTION WATER BY COUPLING DIRECT-OSMOSIS METHODS WITH OTHER METHODS OF FILTRATION - The invention relates to a method for extracting hydrocarbons. The steps involve extracting a process flow from an underground formation, separating this flow into at least one hydrocarbon-containing fraction and one aqueous fraction referred to as the produced water, and reinjcting an injection water into the underground formation. The injection water intended to be introduced into the underground formation is produced partly in a direct-osmosis unit from produced water and partly in a nanofiltration and/or reverse-osmosis unit. The invention also relates to a process for extracting hydrocarbons throughout the exploitation life of the underground hydrocarbon reservoir, and to an injection-water production device especially designed for implementing this process.02-11-2016
20160053601SYSTEM AND METHOD FOR TREATING PRODUCED WATER HAVING A FLASH VAPORIZATION SYSTEM FOR REMOVING DISSOLVED GASES FROM PRODUCED WATER - An oil recovery process includes recovering an oil-water mixture from an oil-bearing formation and separating the produced water from the oil-water mixture. The produced water includes dissolved gases and the method includes heating and pressurizing the produced water. After the produced water is heated and pressurized, it is flash vaporized through a lesser pressure which produces a vapor and residual produced water. The flash vaporization of the produced water evaporates dissolved gases and the dissolved gases are vented away with the vapor.02-25-2016
20160069170METHOD AND PROCESS FOR EXTRACTING SHALE OIL AND GAS BY FRACTURING AND CHEMICAL RETORTING IN OIL SHALE IN-SITU VERTICAL WELL - The present invention provides a method and a process for extracting shale oil and gas by fracturing and chemical retorting oil shale in in-situ vertical well. A vertical well (03-10-2016
20160084060APPARATUS FOR THE RECOVERY OF HYDROCARBONACEOUS AND ADDITIONAL PRODUCTS FROM OIL SHALE AND SANDS VIA MULTI-STAGE CONDENSATION - A system for recovering products from a gas stream comprises a cooled chamber having an inlet that feeds the gas stream to a plurality of sequential conduit loops within the chamber. A critical orifice follows each loop, and each loop includes an output port. Based upon the physical characteristics of each loop, the sizing of the critical orifice following the loop, and the temperature within the chamber, different products are condensed from the gas stream through the output ports. The system may be configured to condense hydrocarbonaceous products such as ethane, propane, butane or methane, as well as fundamental products such as carbon dioxide, nitrogen or hydrogen. Gaseous products may be stored in gas or liquid form or vented to atmosphere depending upon amount, purity, and so forth.03-24-2016
20160108324METHOD AND SYSTEM FOR PREPARING A PIPELINEABLE HYDROCARBON MIXTURE - The present invention provides a method for preparing a pipelineable hydrocarbon mixture from a crude heavy hydrocarbon mixture comprising: —visbreaking said crude heavy hydrocarbon mixture at a temperature of 350 to 440° C. and a pressure of 20 to 150 bar for 0.5 to 15 minutes to produce a visbroken hydrocarbon mixture; and —mixing said visbroken hydrocarbon mixture with a diluent to produce said pipelineable hydrocarbon mixture.04-21-2016
20160138796STEAM DILUENT GENERATOR - A method for using untreated produced water to generate steam and simultaneously producing diluents is disclosed. The method includes a combustion process for generating steam for hydrocarbon recovery using untreated water and, an optional process for recovering combustion byproducts to assist in hydrocarbon recovery or solvent injections. Specifically, a novel combustion method and a double-tube heat exchanger are used to generate steam while minimizing or eliminating water treatment steps and boiler fouling. Low value pitch, also known as asphalt, is used for combustion fuel. In addition to the steam generation, byproducts of the combustion process can be utilized in solvent injections or as a diluent.05-19-2016
20160168932METHOD AND APPARATUS FOR CONTROLLING THE FLOW OF WELLBORE RETURNS06-16-2016
20160168972MITIGATING HYDRATE FORMATION DURING A SHUTDOWN OF A DEEP WATER FPSO06-16-2016
20160186046FLUID COMPOSITION FOR STIMULATION IN THE FIELD OF OIL AND GAS PRODUCTION - A fracturing carrier fluid for fracturing a subterranean formation has at least one linear or branched hydrofluorocarbon compound having a boiling point, at a pressure of 1 atmosphere, of between 0° C. and 65° C. A fracturing fluid is also disclosed having the fracturing carrier fluid and proppants. A method for fracturing a subterranean formation using the fracturing fluid is also disclosed.06-30-2016
20160186047FLUID COMPOSITION FOR STIMULATION IN THE FIELD OF OIL AND GAS PRODUCTION - A fracturing carrier fluid for fracturing a subterranean formation contains at least one linear or branched hydrofluorocarbon ether compound having a boiling point, at a pressure of 1 atmosphere, of between 0° C. and 90° C. A fracturing fluid containing the fracturing carrier fluid and proppants is also disclosed. The disclosure also relates to a method for fracturing a subterranean formation using the fracturing fluid.06-30-2016
20160200968WATER TREATMENT07-14-2016
20160376492SUSPENSIONS FOR ENHANCED HYDROCARBON RECOVERY, AND METHODS OF RECOVERING HYDROCARBONS USING THE SUSPENSIONS - Suspensions comprising polyhedral oligomeric silsesquioxane nanoparticles and at least one carrier fluid. The polyhedral oligomeric silsesquioxane may include functional groups and the suspension may further comprise carbon-based nanoparticles and silica nanoparticles. Methods of recovering hydrocarbons from a subterranean formation using the suspension are disclosed. The method comprises contacting hydrocarbons with the suspension to form an emulsion stabilized by the polyhedral oligomeric silsesquioxane nanoparticles.12-29-2016
20170233633DRILLING COMPOSITION, PROCESS FOR ITS PREPARATION, AND APPLICATIONS THEREOF08-17-2017
20170233639CHEMICALLY ENHANCED OIL RECOVERY METHOD USING VISCOSITY-INCREASING POLYMERIC COMPOUNDS08-17-2017
20180023376RECLAMATION OF BRINES WITH METAL CONTAMINATION USING LIME01-25-2018

Patent applications in class Separating outside of well

Website © 2023 Advameg, Inc.