Class / Patent application number | Description | Number of patent applications / Date published |
164121000 | Preconditioning of apparatus | 16 |
20080289790 | Casting Method and Casting Plant For Carrying Out the Method - In a casting method for producing a cast part, a melt to be cast is filed into a container and the mold is connected seal-tightly to the container. The mold and the container are rotated together so that the melt flows from the container into the mold. The mold and the container are separated from another and the cast part is removed from the mold. The casting plant for performing the method has a mold that is pivotably supported about a first axis of rotation to perform a first movement that is a pivot movement in a first movement direction. A container is pivotably supported about a second axis of rotation. The mold is supported so as to be movable by a second movement in a second movement direction. | 11-27-2008 |
20090126893 | Liquid Metal Directional Casting Process - Processes for directionally casting liquid metal to form an articles can include compressing a seal intermediate a mold chill plate and a mold assembly, wherein the seal circumscribes a shell mold in the mold assembly; filling the shell mold in the mold assembly with molten metal; immersing the mold assembly into a liquid metal cooling bath from a bottom portion to a top portion of the mold assembly; and transmitting heat from the mold assembly to the liquid metal cooling bath to solidify the molten metal from the bottom portion to the top portion of the mold assembly. | 05-21-2009 |
20090145570 | METHOD FOR CASTING MOULDED PIECES - There is provided a method for casting molded pieces comprising production of a casting mold comprising a core of molding material, forming a complete core packet positioning the core packet in a support mold with a separation to the core packet back-filling the space between the core packet and the support mold with a free-flowing bulk material, casting the metal melt into the casting mold, opening or removing the support mold after the solidification of the melt, removing at least the majority of the bulk material and the thermal insulation of the remaining core packet with the cast molded piece therein. | 06-11-2009 |
20090145571 | METAL MOLDING MACHINE AND MOLD CASTING METHOD - A metal molding machine includes a fixed mold and a movable mold, a fixed platen holding the fixed mold, an end frame coupled to the fixed platen by tie rods such that the end frame is fixedly mounted on a bed, a movable platen guided by the tie rods, the movable mold being held by the movable platen, and a rolling support mechanism supporting the movable platen. The rolling support mechanism includes a swingable arm, a wheel disposed on a portion of the swingable arm that is closer to the fixed platen and held in rolling contact with the bed, and a spring disposed on a portion of the swingable arm that is closer to the end frame. The spring is interposed between the swingable arm and a portion of the movable platen, for applying a resilient force in a direction so as to lower the wheel. | 06-11-2009 |
20090165983 | Method for mounting a mould for casting a cast part from a metal melt - A method for mounting a mould composed of mould parts for casting a cylinder block of an internal combustion engine from a metal melt, includes at least one chill, which forms at least one part section of inner surfaces of a cylinder space of the cylinder block, and is positioned and retained at a wall of one of the mould parts. This method provides for moulds to be mounted with chills provided in a mould cavity. This is achieved by holding the at least one chill in its position at least for a specific duration by magnetic forces, which are exerted by a magnet which is arranged on a side of the wall of one of the mould parts facing away from the at least one chill. | 07-02-2009 |
20090308562 | ELECTRICAL SERVO DRIVEN ROLLOVER MELT FURNACE - An apparatus and method for melting metal and casting molds. The apparatus includes a rollover melt furnace having a crucible and a mold. The apparatus also includes an electrical servomotor that drives rotation of the crucible about an axis of rotation. This rotation of the crucible causes molten metal to flow from a pour opening in the crucible into a fill opening in the mold. The apparatus may further include a controller to carry out a pouring process in compliance with a pour profile and a melting process in compliance with a melt profile. | 12-17-2009 |
20090314450 | METHOD AND APPARATUS FOR CASTING METAL ARTICLES - To cast one or more metal articles, a mold structure is positioned on a support with an anchor extending upward from the support into the mold structure. The mold structure and anchor are interconnected by a retainer which extends through a portion of the mold structure into the anchor. When the mold structure is immersed in a cooling bath, force is transmitted between the mold structure and anchor to retain the mold structure against movement relative to the support. | 12-24-2009 |
20100206510 | METHOD AND APPARATUS FOR CASTING METAL ARTICLES - To cast one or more metal articles, a mold structure is positioned on a support with an anchor extending upward from the support into the mold structure. The mold structure and anchor are interconnected by a retainer which extends through a portion of the mold structure into the anchor. When the mold structure is immersed in a cooling bath, force is transmitted between the mold structure and anchor to retain the mold structure against movement relative to the support. | 08-19-2010 |
20110108229 | PISTON MOLD ASSEMBLY AND METHOD OF CONSTRUCTING A PISTON THEREWITH - A mold assembly for forming a piston and method of molding a piston therewith includes a pair of mold halves moveable toward and away from one another along a linear path that is substantially perpendicular to a longitudinal central axis of the piston between an engaged position to provide at least a portion of a mold cavity for forming an outer periphery of the piston and a disengaged position to allow extraction of the piston from the mold cavity. The assembly also has a pair of cooling gallery mandrels moveable along a linear path into an engaged position between the pair of mold halves to form an undercut cooling gallery of the piston. The pair of cooling gallery mandrels are movable to a disengaged position to allow extraction of the piston vertically along the axis. | 05-12-2011 |
20110114280 | GRAVITY CASTING METHOD - A gravity casting method includes: situating a molding die having a feeder portion in communication with a cavity above the cavity to a horizontal state and pouring a molten metal from a runner in communication with the cavity; putting the molding die to a state inclined at a predetermined angle during pouring of the molten metal from a stage where the molten metal is filled in the runner and prevailing the molten metal while pouring to the inside of the cavity and the feeder portion; and returning the molding die to the horizontal state after the molten metal has been poured completely, and solidifying the molten metal. | 05-19-2011 |
20110174459 | MOLD ASSEMBLIES INCLUDING REMOVABLE INSERTS AND ASSOCIATED METHODS OF USE AND MANUFACTURE - Mold assemblies and associated methods and components for forming battery grids for lead acid batteries are disclosed herein. In one embodiment, a battery grid mold assembly includes a first die block that is movable relative to a second die block between an assembled position and an unassembled position spaced apart from the second die block. The mold assembly also includes a first insert plate having a first side that is removably coupled to the first die block and a second side opposite the first side. The second side of the first insert plate includes a first recess. The mold assembly further includes a second insert plate having a third side removably coupled to the second die block and a fourth side opposite the third side. The fourth side includes a second recess. When the first and second die blocks are in the assembled positions, the first and second recesses at least partially define a grid cavity that is configured to receive a flowable material for forming a battery grid. | 07-21-2011 |
20120012272 | Method and Device for Casting a Cast Part from a Metal Melt - A method and a device for casting a cast part from a metal melt. A casting mould in a pivoted mounting comprising a mould cavity shaping the cast part, a feed system and a pour channel, is rotated into a fill position and filled with metal melt. Due to the effect of gravity, the melt flows through the pour channel, wherein the main flow direction of the melt makes an angle relative to the acting direction of gravity. Filling is continued until the casting mould, including the pour channel, is completely filled. Then, the casting mould is sealed with a stopper and rotated into a solidification position, in which the melt in the feed system is pushed against the melt in the mould cavity. The casting mould is held in the solidification position until the metal melt has reached a solidification state in which the cast part can be de-moulded. | 01-19-2012 |
20120085508 | METHOD AND SYSTEM FOR EXTRACTING HEAT FROM METAL CASTINGS AND MOLDS - A method and system for eliminating near-surface porosity and surface tear defects in metal castings. The system includes a complex casting mold having at least one core pin or other regions susceptible to new surface porosity and surface tears. The system further includes a copper rod fused internally to the core pin to extract heat from a molten metal introduced in the mold. The copper rod extracts heat at a low thermal flux, preventing near surface porosity and surface tears. Moreover, the copper rod extracts heat from the hotter regions of the casting causing it to solidify at a rate comparable to the rate of solidification of other portions of the casting, thereby allowing uniform solidification of the casting. | 04-12-2012 |
20140083643 | METHOD AND MOLD FOR CASTING THIN METAL OBJECTS - Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches. | 03-27-2014 |
20140190653 | METHOD FOR PRODUCING INVESTMENT CASTINGS - A method for producing investment castings, preferably in ceramic moulds, from alloys based on Al, Mg, Cu, Zn and Fe, characterised in that the ceramic mould is baked at temperatures of 800-1000° C. for 2-4 hours, then the mould is cooled to a temperature of 20-950° C. and is held at this temperature for 10-40 minutes, then it is poured with liquid alloy overheated by from 50 to 200° C. above the initial melting point and after a lapse of 10-100 seconds, the mould is immersed at a fixed or variable speed in a liquid cooling medium, which is a 1-99 volume percent aqueous solution of liquid polymer at a temperature of 15-85° C. | 07-10-2014 |
20150096710 | Process For Casting A Turbine Wheel - A process for casting a turbine wheel includes steps of identifying a metal composition from which the turbine wheel is to be cast, providing a mold that defines a cavity into which molten metal composition is to be poured for casting the wheel, providing a seed member made of the metal composition and having an equiaxed grain structure, disposing at least a portion of the seed member within the cavity of the mold, pouring the molten metal composition into the cavity such that the molten metal composition envelopes the portion of the seed member within the cavity, and controlling the process so that the portion of the seed member at least partially melts through contact with the molten metal composition and so that, upon cooling, the metal composition around the seed member solidifies with an equiaxed grain structure as precipitated by the equiaxed grain structure of the seed member. | 04-09-2015 |