Class / Patent application number | Description | Number of patent applications / Date published |
152533000 | Reinforcing plies made up from wound narrow ribbons | 10 |
20090008017 | Pneumatic Tire - There is provided a pneumatic tire in which a belt reinforcement layer is placed and capable of increasing both riding comfort and steering stability. Circumferential bending rigidity of a contact belt ply | 01-08-2009 |
20090120551 | Pneumatic Tire And Method For Producing The Same - This invention provides a pneumatic tire having a highly improved steering stability, wherein a reinforcing layer formed by spirally winding a strip-shaped triaxial fabric or triaxial fabric-rubber composite having a width W satisfying a relation of the following formula (I): | 05-14-2009 |
20090320985 | RUBBER STRIP MATERIAL - When forming a rubber member which is made up of a combination of a plurality of rubber compounds by winding spirally a ribbon-shaped unvulcanized rubber strip material in an overlapping fashion, the number of times of winding is reduced so as to shorten a fabrication cycle time of the rubber member to thereby increase the productivity thereof. As a means therefore, a rubber strip material whose cross section is divided into two or more regions which are made up of different rubber compounds is wound spirally on to a drum in an overlapping fashion so as to build a green tire or a tire rubber member. | 12-31-2009 |
20100000651 | METHOD OF PRODUCING A PNEUMATIC TIRE - The present invention relates to a method of producing a pneumatic tire in which, while using a cord material of a secondary belt layer having larger thermal shrinkage rate than that of the primary belt layer to effectively suppress the radial expansion of a tire and advantageously improve cutting-resistance of a tread as in the conventional tire, deterioration of durability of belts including the primary belt and the secondary belt can be effectively prevented without increasing the tire weight, the pneumatic tire having: a pair of bead cores; a carcass troidally extending between the bead cores; a primary belt including a plurality of primary belt layers disposed on the outer peripheral side of the carcass in the crown region thereof; and a secondary belt including at least one secondary belt layer disposed on the outer peripheral side of the primary belt, each primary belt layer being formed by aromatic polyamide cords having a spirally wound structure, the secondary belt layer being formed by a ribbon-shaped strip of organic fiber cords having a larger thermal shrinkage rate than that of the aromatic polyamide cords, the ribbon-shaped strip being bent in a zigzag shape at positions corresponding to respective side ends of the secondary belt layer to extend in the circumferential direction, the method comprising: folding the ribbon-shaped strip | 01-07-2010 |
20100154964 | PNEUMATIC TIRE - A pneumatic tire comprising a tread, a carcass and a zigzag belt structure interposed between the carcass and the tread is provided. The zigzag belt structure is formed of at least two layers of cords interwoven together from a strip of rubber reinforced with one or more cords, wherein the strip forming the zigzag belt structure is layed up in a first zigzag winding extending from a first lateral belt edge to a second lateral belt edge in a zigzag wavelength having a first amplitude W | 06-24-2010 |
20100218873 | PROCESS FOR BUILDING TYRES AND TYRE OBTAINED THEREBY - A pair of annular inserts of elastomeric material is circumferentially applied by spiraling around a laying surface of an auxiliary drum. Then a plurality of strip-like elements disposed in parallel side by side relationship with each other in the circumferential extension of the laying surface is applied onto the auxiliary drum, so as to form at least one first belt layer. Respectively opposite end portions of each strip-like element are radially superposed, each against one of the annular inserts, so that each of the annular inserts projects from a respective end edge of the strip-like element. The cap structure formed on the auxiliary drum is coupled to a carcass structure through toroidal conformation of the latter, in such a manner that the radially external ends of sidewall portions previously manufactured on the carcass plies are associated with the axially external ends of the annular inserts. | 09-02-2010 |
20140053964 | PNEUMATIC TIRE AND METHOD OF FORMING CIRCUMFERENTIAL BELT LAYER OF THE SAME - The present invention relates to a method of forming at least one circumferential belt layer of a pneumatic tire comprising: winding the strip for a half length of an outer circumferential length of the crown portion of the carcass along the tire equatorial plane from a widthwise inner side of the belt end region; winding the strip for the remaining half length while shifting the strip for the width of the strip from a widthwise inner to outer side; winding the strip for the outer circumferential length of the crown portion of the carcass along the tire equatorial plane; winding the strip for the half length of the outer circumferential length of the crown portion of the carcass while shifting the strip for the width of the strip from the widthwise outer to inner side; and winding the strip for the remaining half length along the tire equatorial plane. | 02-27-2014 |
20140251522 | METHOD FOR MANUFACTURING PNEUMATIC TIRE, AND PNEUMATIC TIRE MANUFACTURED BY SAME - According to a method for manufacturing a pneumatic tire of the present invention using a rigid core, high-speed durability may be improved. The present invention comprises manufacturing a green tire in which the green tire is manufactured by adhering tire component members in sequence onto the rigid core. The manufacturing of the green tire comprises forming a band ply in which a band forming member is spirally wound on the rigid core to form the band ply, the band forming member being configured by a band cord, or a narrow band-shaped strip coated with a topping rubber. In the formation of the band ply, the bend forming member is heated to a temperature of above 100 deg. C. while being wound spirally with the bend forming member being extended by at not less than 0.5%. | 09-11-2014 |
20160250894 | Crown Reinforcement For Aircraft Tire | 09-01-2016 |
20180022156 | Protective Crown Reinforcement For Aeroplane Tire | 01-25-2018 |