Class / Patent application number | Description | Number of patent applications / Date published |
148666000 | Magnesium(Mg) or magnesium base alloy | 8 |
148667000 | With working | 8 |
20090032151 | MAGNESIUM BASE ALLOY PIPES AND METHOD OF MANUFACTURING THE SAME - A magnesium base alloy pipe having high strength and toughness is provided along with a method of manufacturing such pipes. A magnesium base alloy pipe, wherein the pipe is produced by drawing a pipe blank of a magnesium base alloy comprising containing either of the following ingredients (1) or (2): (1) about 0.1-12.0 mass % of Al; or (2) about 1.0-10.0 mass % of Zn and about 0.1-2.0 mass % of Zr. The novel alloy pipe is manufactured by a method comprising steps of providing the above-described pipe blank, pointing the pipe blank, and drawing the pointed pipe blank. The drawing step is executed at a drawing temperature above approx. 50° C. | 02-05-2009 |
20100012234 | PROCESS FOR MANUFACTURING HOT-FORGED PARTS MADE OF A MAGNESIUM ALLOY - The present invention relates to a process for manufacturing a process for manufacturing a part made of a magnesium alloy, comprising a step of forging a block of said alloy followed by a heat treatment, characterized in that the alloy is a casting alloy based on 85% magnesium, and containing, by weight:
| 01-21-2010 |
20100163141 | Mg ALLOY AND METHOD OF PRODUCTION OF SAME - An Mg alloy provided with high strength and high ductility by matching the strength and ductility in tensile deformation and compressive deformation at the same levels is provided. The Mg alloy of the present invention is characterized by having a chemical composition consisting of Y: 0.1 to 1.5 at % and a balance of Mg and unavoidable impurities and having a microstructure with high Y regions with Y concentrations higher than an average Y concentration distributed at nanometer order sizes and intervals. The present invention further provides an Mg alloy characterized by having a chemical composition consisting of Y: more than 0.1 at % and a valance of Mg and unavoidable impurities, having a microstructure with high Y regions with Y concentrations higher than an average Y concentration distributed at nanometer order sizes and intervals and having an average recrystallized grain size within the range satisfying the following formula 1: | 07-01-2010 |
20110272069 | WROUGHT MAGNESIUM ALLOY - A magnesium-based alloy consisting of, by weight: 0.5 to 1.5% manganese, 0.05 to 0.5% rare earth of which more than 70% is lanthanum, 0 to 1.5% zinc and 0 to 0.1% strontium, the balance being magnesium except for incidental impurities. | 11-10-2011 |
20110315282 | Mg-BASE ALLOY - The quasicrystal phase and/or quasicrystal-like phase particles, which is composed of the Mg—Zn—Al, are dispersed into Mg-base alloy material for strain working. The microstructure in this material does not include the dendrite structure, and the size of the magnesium matrix is 40 μm or less than 40 μm. The present invention shows that the quasicrystal phase and/or quasicrystal-like phase is able to form by addition of the Zn and Al elements except for the use of rare earth elements. In addition, the excellent trade-off-balancing between strength and ductility and reduction of the yield anisotropy, which are the serious issues for the wrought processed magnesium alloys, is able to obtain by the microstructure controls before the strain working process. | 12-29-2011 |
20130118657 | MAKING DUCTILITY-ENHANCED MAGNESIUM ALLOY SHEET MATERIALS - A method of enhancing the ductility of magnesium alloy sheets containing 85% or more by weight of magnesium is described. An annealed, substantially strain free, sheet of generally uniform grain size is locally deformed in local regions to develop strained ‘islands’ of a predetermined strain embedded in a substantially strain-free matrix and then annealed. The deformed regions undergo recrystallization and grain growth while the remainder of the sheet suffers only minor change in grain size, leading to sheet with grains having a bimodal size distribution. The ductility of alloys processed in this way is significantly greater than the ductility of the unprocessed, uniform grain size alloy without compromise to the tensile strength of the alloy. | 05-16-2013 |
20140373982 | Magnesium Alloy Sheet with Low Gd Content, High Ductility and the Hot Rolling Technology Thereof - The present invention discloses a magnesium alloy sheet with low Gd content and high ductility and its hot rolling technology, which belongs to the field of metal material technology. The chemical components of the magnesium alloy sheet, based on the mass percent, take up respectively: 0.9˜2.1% as Zn, 0.2˜0.8% as rare earth element, namely Gd, 0˜0.9% as Mn, and the rest as Mg. The magnesium alloy sheet of the present invention is added with relatively lower rare earth element, Gd, which reduces the alloy costs; in addition, magnesium alloy has good rolling performance, which can realize continuous, multi-pass and large-deformation rolling, and also ensure the sheets rolled have non-basal texture and high room-temperature elongation which reaches 35˜50%, wherein the elongation, δ, in the rolling direction is no less than 35% and that in the horizontal direction no less than 45%. | 12-25-2014 |
20150083285 | MAGNESIUM ALLOY, MAGNESIUM ALLOY MEMBER AND METHOD FOR MANUFACTURING SAME, AND METHOD FOR USING MAGNESIUM ALLOY - A magnesium alloy of the present invention has the chemical composition that contains 0.02 mol % or more and less than 0.1 mol % of at least one element selected from yttrium, scandium, and lanthanoid rare earth elements, and magnesium and unavoidable impurities accounting for the remainder. A magnesium alloy member of the present invention is produced by hot plastic working of the magnesium alloy in a temperature range of 200° C. to 550° C., followed by an isothermal heat treatment performed in a temperature range of 300° C. to 600° C. The magnesium alloy is preferred for use in applications such as in automobiles, railcars, and aerospace flying objects. The magnesium alloy and the magnesium alloy member can overcome the yielding stress anisotropy problem, and are less vulnerable to the rising price of rare earth elements. | 03-26-2015 |