Class / Patent application number | Description | Number of patent applications / Date published |
148621000 | Highly alloyed (i.e., greater than 10 percent alloying elements) | 13 |
20090218015 | Damping Alloy Steel Sheet and Method for Producing Same - Provided is a steel-based damping alloy steel sheet having a thickness of 2.0 mm or less which has excellent damping property, its loss factor being 0.040 or more, without expensive elements such as Cr and Co added; and a method for producing the same. Further provided is a damping alloy steel sheet having a thickness of 2.0 mm or less which contains at least one of the following elements in the following concentrations; C: 0.005% or less, Mn: 0.05 to 1.5%, P: 0.2% or less, S: 0.02% or less, N: 0.005% or less, Si: 1.0 to 3.5%, and Sol. Al: 1.0 to 7.0%, in terms of mass, the remainder being Fe and inevitable impurities, and has an average grain diameter of 50 to 500 μm, a maximum permeability of 2,000 or more, and a residual induction of 0.90 T or less. | 09-03-2009 |
20100051146 | METHOD OF MANUFACTURING TWINNING INDUCED PLASTICITY TYPE ULTRA-HIGH STRENGTH STEEL SHEET - The present invention features a method of manufacturing a TWIP type ultra-high strength steel sheet, which can improve the yield strength, tensile strength and elongation rate of the TWIP type ultra-high strength steel sheet by appropriately adjusting the amounts of carbon (C), silicon (Si), manganese (Mn), aluminum (Al), molybdenum (Mo), phosphorus (P) and sulfur (S). | 03-04-2010 |
20100139819 | METHOD FOR PRODUCING STEEL PART HAVING LONG ROLLING CONTACT FATIGUE LIFE - A steel part having a long rolling contact fatigue life and capable of further increasing the life of a bearing under severer using condition than usual conditions. The steel part includes steel having a composition containing 0.7% by mass to 1.1% by mass of C, 0.5% by mass to 2.0% by mass of Si, 0.4% by mass to 2.5% by mass of Mn, 1.6% by mass to 5.0% by mass of Cr, 0.1% by mass to less than 0.5% by mass of Mo, 0.010% by mass to 0.050% by mass of Al, less than 0.0015% by mass of Sb as an impurity, and the balance composed of Fe and inevitable impurities, the steel being hardened and tempered. In the steel structure of a portion from the surface to a depth of 5 mm, residual cementite has a grain diameter of 0.05 to 1.5 μm, prior austenite has a grain diameter of 30 μm or less, and the ratio by volume of the residual austenite is less than 25%. | 06-10-2010 |
20100147424 | ABRASION-RESISTANT STEEL EXCELLENT IN FORMABILITY AND PRODUCTION METHOD THEREOF - An abrasion resistant steel excellent in bending formability and suitable for members, e.g., power shovels, which come into contact with earth and sand, and a production method thereof are provided. Specifically, the steel contains, on a percent by mass basis, 0.05% to 0.35% of C, 0.05% to 1.0% of Si, 0.1% to 2.0% of Mn, 0.1% to 1.2% of Ti, 0.1% or less of Al, at least one element of 0.1% to 1.0% of Cu, 0.1% to 2.0% of Ni, 0.1% to 1.0% of Cr, 0.05% to 1.0% of Mo, 0.05% to 1.0% of W, and 0.0003% to 0.0030% of B, if necessary at least one element of 0.005% to 1.0% of Nb and 0.005% to 1.0% of V, and the remainder including Fe and incidental impurities, where DI* represented by the following formula is less than 60: | 06-17-2010 |
20100193089 | HOT-WORKING TOOL STEEL HAVING EXCELLENT TOUGHNESS AND HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF - Disclosed is a hot-working tool steel having improved toughness and high-temperature strength. Also disclosed is a method for producing the hot-working tool steel. The hot-working tool steel comprises the following components (by mass): C: 0.34-0.40%, Si: 0.3-0.5%, Mn: 0.45-0.75%, Ni: 0-0.5% (exclusive), Cr: 4.9-5.5%, (Mo+1/2W): 2.5-2.9% (provided that Mo and W are contained singly or in combination), and V: 0.5-0.7%, with the remainder being Fe and unavoidable impurities. Preferably, the cross-sectional structure of the hot-working tool steel upon quenching contains a granular structure and an acicular structure, wherein the granular structure (A %) accounts for 45 area % or less, the acicular structure (B %) accounts for 40 area % or less, and the remaining austenite (C %) accounts for 5 to 20 volume %.; Also disclosed is a method for producing a hot-working tool steel, which comprises tempering the above-mentioned hot-working tool steel so that a value X determined by the following relational expression between a tempered hardness (HRC) and the percentages of the tissues becomes 40 or greater. | 08-05-2010 |
20100230015 | LOWER-COST, ULTRA-HIGH-STRENGTH, HIGH-TOUGHNESS STEEL - A non-stainless steel alloy includes, in combination by weight, about 0.20% to about 0.33% carbon, about 4.0% to about 8.0% cobalt, about 7.0 to about 11.0% nickel, about 0.8% to about 3.0% chromium, about 0.5% to about 2.5% molybdenum, about 0.5% to about 5.9% tungsten, about 0.05% to about 0.20% vanadium, and up to about 0.02% titanium, the balance essentially iron and incidental elements and impurities. | 09-16-2010 |
20110192507 | IRON ALLOY, IRON-ALLOY MEMBER, AND PROCESS FOR MANUFACTURING THE SAME - An iron alloy according to the present invention comprises: Al in an amount of from 3 to 5.5%; Mn in an amount from 0.2 to 6%; and the balance being iron (Fe), and inevitable impurities and/or a modifying element; when the entirety is taken as 100%. Since a high damping factor is obtainable at a low-strain amplitude, this iron alloy demonstrates a stable damping property even in a high-temperature region. Moreover, since the alloying elements are Al and Mn alone, and since their contents are less, the iron alloy according to the present invention is low in cost. | 08-11-2011 |
20130098514 | Ni-ADDED STEEL PLATE AND METHOD OF MANUFACTURING THE SAME - A Ni-added steel plate contains, by mass %, C: 0.03% to 0.10%, Si: 0.02% to 0.40%, Mn: 0.3% to 1.2%, Ni: 5.0% to 7.5%, Cr: 0.4% to 1.5%, Mo: 0.02% to 0.4%, Al: 0.01% to 0.08%, T•O: 0.0001% to 0.0050%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, and N: limited to 0.0070% or less with a remainder composed of Fe and inevitable impurities, in which a Ni segregation ratio at a position of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after deep cooling is 2% or more, an austenite unevenness index after deep cooling is 5.0 or less, and an average equivalent circle diameter of austenite after deep cooling is 1 μm or less. | 04-25-2013 |
20140000770 | HIGH THERMAL DIFFUSIVITY AND HIGH WEAR RESISTANCE TOOL STEEL | 01-02-2014 |
20140076470 | METHOD FOR THE PRODUCTION OF VERY HIGH STRENGTH MARTENSITIC STEEL AND SHEET OR PART THUS OBTAINED - The present invention provides a method for the fabrication of a steel sheet with a completely martensitic structure which has an average lath size of less than 1 micrometer and an average elongation factor of the laths is between 2 and 5. The elongation factor of a lath is defined as a maximum dimension divided by and a minimum dimension 1 | 03-20-2014 |
20140158258 | Ni-ADDED STEEL PLATE AND METHOD OF MANUFACTURING THE SAME - A Ni-added steel plate includes, by mass %, C: 0.04% to 0.10%, Si: 0.02% to 0.12%, Mn: 0.3% to 1.0%, Ni: more than 7.5% to 10.0%, Al: 0.01% to 0.08%, T.O: 0.0001% to 0.0030%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, N: limited to 0.0070% or less, and the balance consisting of Fe and unavoidable impurities, in which a Ni segregation ratio at an area of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after a deep cooling is 0.5% or more, an austenite unevenness index after the deep cooling is 3.0 or less, and an average equivalent circle diameter of the austenite after the deep cooling is 1 μm or less. | 06-12-2014 |
20150114527 | STEEL FOR OIL COUNTRY TUBULAR GOODS AND METHOD OF PRODUCING THE SAME - A steel for oil country tubular goods includes, as a chemical composition, by mass %, C, Si, Mn, Al, Mo, P, S, O, N, and a balance containing Fe and impurities, wherein a full width at half maximum HW of a crystal plane corresponding to a (211) crystal plane of an α phase and a carbon content expressed in mass % in the chemical composition satisfy HW×C | 04-30-2015 |
20150299835 | HIGH-CHARACTERISTIC STEEL FOR LARGE-SIZE PARTS - High-strength steel of which the chemical composition comprises, by weight: | 10-22-2015 |