Class / Patent application number | Description | Number of patent applications / Date published |
148612000 | Starting material contains 1.7 percent or more carbon (e.g., cast iron, etc.) | 8 |
20080202652 | Ferrous seal sliding parts and producing method thereof - A ferrous seal sliding part excellent in heat crack resistance, seizure resistance and abrasion resistance is provided. The ferrous seal sliding part has a seal sliding surface, wherein the seal sliding surface has a quench hardened layer having a structure in which a martensite parent phase forms a solid solution with carbon of 0.15 to 0.6 wt % and contains cementite dispersed therein in a content of 3 to 50% by volume. | 08-28-2008 |
20090320971 | METHOD FOR MANUFACTURING SPHEROIDAL CAST IRON MECHANICAL COMPONENTS - A method for manufacturing mechanical components made of spheroidal cast iron, comprising the following steps: -providing a casting of a mechanical component made of cast iron having a structure which is at least partially ferritic and has a carbon content ranging from 2.5% to 4.0% and a silicon content ranging from 2.0% to 3.5%; -bringing the cast iron casting having an at least partially ferritic structure to a temperature for partial austenitizing which is higher than the lower limit austenitizing temperature (Ac1) and lower than the upper limit austenitizing temperature (Ac3) for a time required to obtain an at least partially austenitic structure; -performing a thermal treatment for isothermal hardening at a temperature ranging from 250° C. to 400° C. in order to obtain a matrix which has at least partially a pearlitic-ferritic or perferritic structure. | 12-31-2009 |
20100043927 | ALLOY COMPOSITION, FE-BASED NANO-CRYSTALLINE ALLOY AND FORMING METHOD OF THE SAME AND MAGNETIC COMPONENT - An alloy composition of Fe | 02-25-2010 |
20110120599 | METHOD AND WORK PIECE - Method for austempering at least one part of a work piece, which method comprises the steps of: a) heating at least one part of the work piece to an initial austenitizing temperature (T | 05-26-2011 |
20150114525 | TOUGH BAINITIC HEAT TREATMENTS ON STEELS FOR TOOLING - The invention relates to a method that has been developed to obtain good toughness and homogeneous properties through heavy sections in tool steels or likely highly alloyed steels. The microstructure attained is mostly bainitic. The method is especially good for hot work tool steels in applications demanding heavy sections and very high toughness. The method consists on the application of a low temperature bainitic transformation to tool steels presenting a low enough martensite transformation temperature (Ms). Additionally or alternatively cementite is replaced from the bainite by other finer carbides, mainly mixed carbides containing elements with stronger affinity for carbon than iron. The method is especially simple if applied to steels with high contents of Si or Al (>1.3% and >0.4% respectively) where cementite growth is impaired. The method works also well for low cost plastic injection moulding and structural steels. Even some higher alloyed tool steels can benefit from, the present method. | 04-30-2015 |
20160032430 | DEVELOPMENT OF NANOSTRUCTURE AUSTEMPERED DUCTILE IRON WITH DUAL PHASE MICROSTRUCTURE - A method for forming an austempered iron composition with a nanoscale microstructure includes a step of heating an iron-carbon-silicon alloy with silicon to a first temperature that is lower than A1 for the iron-carbon-silicon alloy. The iron-carbon-silicon alloy is then adiabatically deformed such that the temperature of the iron-carbon-silicon alloy rises to a second temperature which is sufficient to form proeutectoid ferrite and austenite. The iron-carbon-silicon alloy is cooled to a first austempering temperature. The iron-carbon-silicon alloy is then heated to a second austempering temperature that is greater than the first austempering temperature to form a dual phase microstructure. Characteristically, the dual phase microstructure includes proeutectoid ferrite and ausferrite. | 02-04-2016 |
148614000 | Starting material is spherulitic (i.e., spheroidal) or vermicular (i.e., wormlike) | 2 |
20110290384 | HIGH-MANGANESE SPHEROIDAL GRAPHITE CAST IRON - The manufacturing method of high-manganese spheroidal graphite cast iron with exhibiting low magnetism, and excellent wear resistance, castability, and machinability, and having a composition which consists of, 2.5 to 4.0 wt. % of C content, 1.5 to 6.0 wt. % of Si content, 7.0 to 18.0 wt. % of Mn content, and 0.015 to 0.1 wt. % of Mg content, and when the Mn content falls within the range of 7.0 to 10.0 wt. %, consists of 10.0 wt. % or smaller of Ni content, or when the Mn content falls within the range of 10.0 to 18.0 wt. %, consists of Ni content being in the range satisfies the following formula: [Mn wt. %>Ni wt. %],
| 12-01-2011 |
20130263980 | METHOD FOR IMPROVING FATIGUE STRENGTH OF CAST IRON MATERIAL - The purpose of the present invention is to provide a method for improving fatigue strength that is capable of improving the fatigue strength of cast iron, specifically spherical graphite cast iron, to the same level as that of carbon steel subjected 10 carburizing and quenching. To this end, this method contains a step for performing first, second and third shot peenings using shot of a prescribed diameter for each on spherical graphite cast iron on which a quenching and tempering heat treatment or austempering heat treatment has been performed and tensile strength made to be 1200 MPa or more, the spherical graphite cast iron containing the following elements in the following mass percentages: C=2.0-4.0%, Si=1.5-4.5%, Mn=2.0% or less, P=O.08% or less, 8=0.03% or less, Mg=0.02-0.1%, and Cu=1.8-4.0%. | 10-10-2013 |