Class / Patent application number | Description | Number of patent applications / Date published |
148577000 | Chilling to subambient temperature | 9 |
20090090438 | Method and apparatus for making high strength metals with a face-centered-cubic structure - A process for increasing the strength of pure copper and other fcc matrix alloys. The method is particularly applicable to face-centered-cubic materials that undergo dynamic recovery when strain-hardened at room temperature. A cryogenic strain hardening process is used to create a high strength pure copper or copper+Al | 04-09-2009 |
20100269961 | Method and apparatus for making high strength metals with a face-centered-cubic structure - A process for increasing the strength of pure copper and other fcc matrix alloys while maintaining ductility. The method is particularly applicable to face-centered-cubic materials that undergo dynamic recovery when strain-hardened at room temperature. The material is first subjected to equal channel angular pressing to create an ultra fine grain structure (“UFG”). The UFG sample is then subjected to cryogenic drawing and finally to subcryogenic deformation. | 10-28-2010 |
148578000 | Iron(Fe) or iron base alloy | 7 |
20100139817 | MARTENSITIC STAINLESS STEEL COMPOSITION, METHOD FOR MAKING A MECHANICAL PART FROM SAID STEEL AND RESULTING PART - The invention concerns martensitic stainless steel, characterized in that its composition in weight percentages is as follows: 9%=Cr=13%; 1.5%=Mo=3%; 8%=Ni=14%; 1%=Al=2%; 0.5%=Ti=1.5% with AI+Ti=2.25%; traces=Co=2%; traces=W=1% with Mo+(W/2)=3%; traces=P=0.02%; traces=S=0.0050%; traces=N=0.0060%; traces=C=0.025%; traces=Cu=0.5%; traces=Mn=3%; traces=Si=0.25%; traces=O=0.0050%; and is such that: Ms (° C.)=1302 42 Cr 63 Ni 30 Mo+20AI-15W-33Mn-28Si-30Cu-13Co+10 Ti=50Cr eq/Ni eq=1.05 with Cr eq (%)=Cr+2Si+Mo+1.5 Ti+5.5 AI+0.6W Ni eq (%)=2Ni+0.5 Mn+3O C+25 N+Co+0.3 Cu. The invention also concerns a method for making a mechanical part using said steel, and the resulting part. | 06-10-2010 |
20110232809 | HIGH CORROSION RESISTANCE PRECIPITATION HARDENED MARTENSITIC STAINLESS STEEL - A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about | 09-29-2011 |
20120000579 | Method of Making Ultra-High Strength Stainless Steels - An ultra-high strength stainless steel alloy with enhanced toughness includes in % by weight: 0 to 0.06% carbon (C); 12.0 to 18% chromium (Cr); 16.5 to 31.0% cobalt (Co); 0 to 8% molybdenum (Mo); 0.5 to 5.0% nickel (Ni); 0 to 0.5% titanium (Ti); 0 to 1.0% niobium (Nb); 0 to 0.5% vanadium (V); 0 to 16% tungsten (W); balance iron (Fe) and incidental deoxidizers and impurities. The heat treating method includes the steps of austenitizing at least once followed by quenching, tempering and sub-zero cooling to obtain no more than about 6-8% retained austenite in the finished alloy. | 01-05-2012 |
20120055592 | Method of Metal Processing Using Cryogenic Cooling - Described herein are a method, an apparatus, and a system for metal processing that improves one or more properties of a sintered metal part by controlling the process conditions of the cooling zone of a continuous furnace using one or more cryogenic fluids. In one aspect, there is provided a method comprising: providing a furnace wherein the metal part is passed therethough on a conveyor belt and comprises a hot zone and a cooling zone wherein the cooling zone has a first temperature; and introducing a cryogenic fluid into the cooling zone where the cryogenic fluid reduces the temperature of the cooling zone to a second temperature, wherein at least a portion of the cryogenic fluid provides a vapor within the cooling zone and cools the metal parts passing therethrough at an accelerated cooling rate. | 03-08-2012 |
20140158257 | METHOD FOR PRODUCING A MOTOR VEHICLE COMPONENT AND MOTOR VEHICLE COMPONENT - In a method for producing a motor vehicle component and a motor vehicle component produced according to the invention a steel sheet with a stacking fault energy between 10 and 40 mJ/m | 06-12-2014 |
20150027598 | CHROMIUM-NICKEL STEEL, MARTENSITIC WIRE AND METHOD FOR PRODUCTION THEREOF - A hardenable chromium-nickel steel, comprising 0.005 to 0.12% carbon, 9 to 17% chromium, 5 to 12% nickel, at most 3% cobalt, 0.5 to 4% molybdenum, 0.25 to 1.0% silicon, 0.5% to 3.0% manganese, 1 to 3% titanium, 0.25 to 1% vanadium, 0.05 to 0.5% niobium, 0.001 to 0.30% nitrogen, at most 0.5% tantalum, 0.001 to 0.030% sulfur, 0.2 to 2.0% copper, at most 0.5% tungsten, at most 1.5% aluminum, 0.0001 to 0.01% boron, and at most 0.035% phosphorus, remainder iron including impurities resulting from smelting, is suitable in particular as a material for producing wire by drawing in the 3-phase region of α-martensite, ε-martensite, and austenite, in conjunction with a heat treatment. The wire can be used for components for instrument construction, surgical needles, valve pins, and dental braces. | 01-29-2015 |
20160122839 | METHOD FOR PRODUCING COMPONENTS FROM LIGHTWEIGHT STEEL - A method is disclosed for producing components from an austenitic lightweight steel which is metastable in its initial state, by forming of a sheet, a circuit board or a pipe in one or more steps, exhibiting a temperature-dependent TRIP and/or TWIP effect during forming. To obtain a component with, in particular, high toughness, the forming is carried out at a temperature above room temperature, at 40 to 160° C., which avoids the TRIP/TWIP effect, and to achieve in particular high component strength, the forming is carried out at a temperature below room temperature, at −65 to 0° C., which enhances the TRIP/TWIP effect. | 05-05-2016 |