Class / Patent application number | Description | Number of patent applications / Date published |
148534000 | With working | 10 |
20090151821 | Method and Device Adjusting Targeted Combinations of Properties of Polyphase Steel - Compared to conventional steel products, polyphase steels have a significantly improved combination of resistance and ductility and are therefore becoming more and more important—especially for the automobile industry. The currently most important steel groups for the automobile industry are dual phase steels and TRIP steels. The production of different polyphase steel resistance categories, carried out directly on a hot strip, for meeting various requirements, requires a highly extensive know-how and firstly a corresponding adaptation of the alloy elements. According to the invention, a heat treatment ( | 06-18-2009 |
20110017363 | HIGH STRENGTH THIN STEEL SHEET EXCELLING IN WELDABILITY AND PROCESS FOR PRODUCING THE SAME - Provided are a high strength thin steel sheet having tensile strength of about 800 MPa or more, and a manufacturing method thereof. The thin steel sheet is mainly used for construction materials, home appliances, and automobiles. The thin steel sheet has excellent plating characteristic, welding characteristic, bending workability, and hole expansion ratio. The thin steel sheet includes, in weight %, C: 0.02-0.20%, Si: 1.5% or less, Mn: 1.5-3.0%, P: 0.001-0.10%, S: 0.010% or less, SoLAl: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, Sb: 0.001-0.10%, and including at least one material selected from the group consisting of Ti: 0.003-0.08%, Nb: 0.003-0.08%, and Mo: 0.003-0.08%, and includes Fe and other inevitable impurities as a remainder. Here, Si, Mn, B, Sb, P, and S meet conditions of 5<(Si/Mn+150B)/Sb<20 and C+Mn/20+Si/30+2P+4S<0.27. Also, the manufacturing method can secure workability of the thin steel sheet. | 01-27-2011 |
20110132502 | Method for Producing a Formed Steel Part Having a Predominantly Ferritic-Bainitic Structure - In a method to produce formed steel parts a primary steel material is provided, which (in % by weight) comprises C: 0.02-0.6%, Mn: 0.5-2.0%, Al: 0.01-0.06%, Si: max. 0.4%, Cr: max. 1.2%, P: max. 0.035%, S: max. 0.035%, and optionally one or more of the elements of the “Ti, Cu, B, Mo, Ni, N” group, with the proviso that Ti: max. 0.05%, Cu: max. 0.01%, B: 0.0008-0.005%, Mo: max. 0.3%, Ni: max. 0.4%, N: max. 0.01%, and the remainder as iron and unavoidable impurities. The primary material is heated through at a heating temperature (TA) lying between the Ac1 and the Ac3 temperature, such that at best incomplete austenitising of the primary material takes place, is placed into a press-form tool and formed therein into the formed steel part. The formed steel part is then heated to a bainite forming temperature (TB), which is above the martensite starting temperature (MS), however below the pearlite transformation temperature of the steel. After cooling, it is maintained for an austernpering period (tB) at the bainite forming temperature (TB) in a substantially isothermic manner, until the formed steel part has produced a structure consisting predominantly of ferrite and bainite, the martensite content thereof being <5%, wherein residual austenite contents of <10% may be present. The formed part is then cooled to room temperature. | 06-09-2011 |
20110203705 | METHOD OF PRODUCING AN AMORPHOUS TRANSFORMER FOR ELECTRIC POWER SUPPLY - This method of producing an amorphous transformer for electric power supply comprises forming and shaping an iron core by laminating amorphous alloy thin bands and forming a winding, subjecting the iron core, after forming and shaping, to an annealing treatment in which a temperature of a center portion of the iron core during annealing is 300 to 340° C. and a holding time is not less than 0.5 hr, and applying a magnetic field having a strength of not less than 800 A/m to the iron core while subjecting the iron core, after forming and shaping, to the annealing treatment. | 08-25-2011 |
20120073708 | METHOD OF SHAPING AND HARDENING A SHEET STEEL BLANK - The properties of products manufactured by press hardening from composite blanks, referred to as tailor-welded blanks (TWB), are improved by cooling the weld at a reduced cooling rate during the hardening of the formed product so that a narrow, soft area is formed alongside the weld. | 03-29-2012 |
20120211129 | Fe-BASED METAL PLATE AND METHOD OF MANUFACTURING THE SAME - On at least one surface of a base metal plate ( | 08-23-2012 |
20130213530 | Process for Conditioning the Surface of Hardened Sheet-Steel Components Which Are Protected Against Corrosion - The invention relates to a process for conditioning the surface of hardened, corrosion-protected sheet-steel components; the steel plate is a steel plate that is covered with a metallic coating and is heated for hardening and is then quench hardened and after the hardening, oxides that are present on the corrosion protection coating due to the heating are removed; the component undergoes a slide grinding in order to condition the surface of the metallic covering or corrosion protection layer. | 08-22-2013 |
20160010170 | Ultrathin Alloys | 01-14-2016 |
20160017455 | METHOD OF MAKING A DUAL HARDNESS STEEL ARTICLE - A dual hardness steel article comprises a first air hardenable steel alloy having a first hardness metallurgically bonded to a second air hardenable steel alloy having a second hardness. A method of manufacturing a dual hard steel article comprises providing a first air hardenable steel alloy part comprising a first mating surface and having a first part hardness, and providing a second air hardenable steel alloy part comprising a second mating surface and having a second part hardness. The first air hardenable steel alloy part is metallurgically secured to the second air hardenable steel alloy part to form a metallurgically secured assembly, and the metallurgically secured assembly is hot rolled to provide a metallurgical bond between the first mating surface and the second mating surface. | 01-21-2016 |
20160145711 | METHOD FOR PRODUCING JOURNAL PART OF 9 TO 12% Cr STEEL TURBINE ROTOR, AND JOURNAL PART PRODUCED BY THE METHOD - In a journal part of a 9 to 12 wt % Cr steel turbine rotor, a groove face is formed, and on the groove face, a lower build-up layer is formed by using a first welding material containing C: 0.10 to 0.25 wt %, Si: 0.20 to 0.80 wt %, Mn: 1.0 to 2.5 wt %, Ni: 0.4 to 1.0 wt %, Cr: 1.0 to 3.0 wt %, Mo: 0.2 to 1.5 wt %, V: 0.03 to 0.10 wt %, and a remainder composed of Fe and inevitable impurities, and further on this lower build-up layer, an upper build-up layer is formed using a second welding material containing C: 0.10 to 0.25 wt %, Si: 0.20 to 0.80 wt %, Mn: 1.0 to 2.5 wt %, Ni: 0.4 to 1.0 wt %, Cr: 1.0 to 3.0 wt %, Mo: 0.2 to 1.5 wt %, and a remainder consisting of Fe and inevitable impurities. | 05-26-2016 |