Class / Patent application number | Description | Number of patent applications / Date published |
148242000 | Molten bath or molten surface utilized during reaction | 6 |
20080308191 | Process For Melt Dip Coating a Strip of High-Tensile Steel - A process for melt dip coating a strip of high-tensile steel with alloy constituents including zinc and/or aluminum includes the following steps. The strip is heated in a continuous furnace initially in a reductive atmosphere to a temperature of approximately 650° C., at which the alloy constituents diffuse to the surface in small amounts. The surface, consisting predominantly of pure iron, is converted into an iron oxide layer by a short heat treatment at a temperature of up to 750° C. in a reaction chamber which is integrated in a continuous furnace and has an oxidizing atmosphere. In a subsequent annealing treatment at a higher temperature in a reductive atmosphere, this iron oxide layer prevents the alloy constituents from diffusing to the surface. In the reductive atmosphere, the iron oxide layer is converted into a pure iron layer to which the zinc and/or aluminium are applied in the molten bath with optimum adhesion. | 12-18-2008 |
20100006184 | ALLOYED HOT-DIP GALVANIZED STEEL SHEET AND PRODUCTION METHOD THEREOF - Disclosed is an alloyed hot-dip galvanized steel sheet containing 2.0 to 3.5 percent by mass of Mn. The steel sheet includes a base steel sheet and a galvanized zinc-coat layer thereon, in which MnO particles are present in an average number of 10 or less per micrometer on a straight line lying in an interface between the galvanized zinc-coat layer and the steel sheet, an Fe—Al—O alloy layer is present at the interface between the MnO particles and the steel sheet, and the length of the Fe—Al—O alloy layer is less than 10% of the overall length of the interface. The alloyed hot-dip galvanized steel sheet, even though having a high Mn content, is resistant to uneven alloying and excels in surface appearance, because the amounts of the MnO particles and the Fe—Al—O alloy layer that cause uneven alloying are controlled. | 01-14-2010 |
20100108198 | METHOD FOR HARDENING THE SURFACES OF WORK PIECES MADE OF STAINLESS STEEL, AND A MOLTEN SALT BATH FOR REALIZING THE METHOD - A method for hardening the surfaces of work pieces made from stainless steel includes submerging the work pieces into a molten salt bath having the composition: potassium acetate 60-100 weight %; sodium acetate 0-100 weight %; metal salt 0-2 weight %, and are subjecting the work pieces to the molten salt bath for a period of 24 to 240 hours, during which the temperature of the molten salt bath is maintained less than 400° C. | 05-06-2010 |
20100243109 | METHOD FOR PRODUCING CORROSION-RESISTANT SURFACES OF NITRATED OR NITROCARBURATED STEEL COMPONENTS - The invention relates to a method for producing corrosion-resistant surfaces of nitrated or nitrocarburated steel components, the surfaces having roughness heights (Rz) of Rz≧1.5 μm. The method comprises the following steps: oxidation of the surfaces of the nitrated or nitrocarburated components in a first oxidation step; carrying out at least a second oxidation of the component surfaces in an immediately subsequent oxidation step; polishing the component surface in a final method step, directly after the final oxidation. | 09-30-2010 |
20110017353 | METHOD FOR MAKING A REFRACTORY CARBIDE LAYER ON A PART MADE OF C/C COMPOSITE MATERIAL - The invention relates to a method of making a refractory carbide layer on the accessible surface of a C/C composite material, the method including a step consisting in placing the composite material in contact with a reactive composition in solid form that contains an atomic proportion greater than or equal to one-third and less than or equal to 95% of a metal that is a precursor of a determined carbide having a melting temperature greater than 2000° C., and an atomic proportion of silicon that is greater than or equal to 5% and less than or equal to two-thirds. The method further includes a step consisting in impregnating the accessible surface of the C/C composite material with the reactive composition melted at a temperature that is greater than or equal to the melting temperature of the metal that is a precursor of a determined carbide. | 01-27-2011 |
20160108492 | HIGH-FORMABILITY AND SUPER-STRENGTH HOT GALVANIZING STEEL PLATE AND MANUFACTURING METHOD THEREOF - A high-formability, super-high-strength, hot-dip galvanized steel plate, the chemical composition of which comprises, based on weight percentage, C: 0.15-0.25 wt %, Si: 1.00-2.00 wt %, Mn: 1.50-3.00 wt %, P≦0.015 wt %, S≦0.012 wt %, Al: 0.03-0.06 wt %, N≦0.008 wt %, and the balance of iron and unavoidable impurities. The room temperature structure of the steel plate comprises 10-30% ferrite, 60-80% martensite and 5-15% residual austenite. The steel plate has a yield strength of 600-900 MPa, a tensile strength of 980-1200 MPa, and an elongation of 15-22%. Through an appropriate composition design, a super-high-strength, cold rolled, hot-dip galvanized steel plate is manufactured by continuous annealing, wherein no expensive alloy elements are added; instead, remarkable increase of strength along with good plasticity can be realized just by appropriate augment of Si, Mn contents in combination with suitable processes of annealing and furnace atmosphere control. In addition, the steel plate possesses good galvanization quality that meets the requirement of a super-high-strength, cold rolled, hot-dip galvanized steel plate for automobiles. | 04-21-2016 |