Class / Patent application number | Description | Number of patent applications / Date published |
137010000 | By speed of fluid | 40 |
20080257413 | System, Program Product, and Related Methods for Global Targeting of Process Utilities Under Varying Conditions - Systems, program product, and methods to estimate and manage flowing fluid characteristics of a fluid stream flowing through a pipeline in real-time, are provided. A system can include a vertically oriented extent of a pipeline for transporting crude oil, a pair of spaced vertically apart sensors or sensor assemblies connected to a bypass line interfaced with or positioned across the vertically oriented extent of the pipeline to obtain pressure and temperature readings of the crude oil flowing through the pipeline, a controller in communication with the pair of sensors or sensor assemblies, and crude oil analysis and management program product stored in the memory of the controller and adapted to determine or estimate density, specific gravity, and API gravity of the crude oil to thereby manage flowing fluid characteristics of the crude oil. | 10-23-2008 |
20100212748 | SYSTEM AND METHOD FOR DETECTING AND PREVENTING FLUID LEAKS - Systems and methods are provided for detecting and preventing fluid leaks. A rate of flow of a portion of fluid flowing through a fluid distribution network over a period of time is monitored. A determination is made whether the rate of flow of the fluid over the period of time is greater than zero but so low that it indicates a leak in the water pipe. If the rate of flow over the period of time indicates a leak, then the flow of the liquid through the system is stopped and an indication is provided that a leak has been detected. | 08-26-2010 |
20100229954 | Method and Apparatus for Controlling Fluid Pressure - A method and apparatus to control pressure in a fluid delivery system utilizes a variable-pressure regulating means and a flow-controlled selecting means to provide a higher pressure when the flow in the system is higher, and to provide a lower pressure when the flow in the system is lower. It exploits an inherent signal that is generated and transmitted by the fluid, and which enables remote control of the pressure. Useful, for example, to provide pressure control for a garden hose fitted with a closeable nozzle, wherein full pressure is provided through the hose when the nozzle is open, lower pressure is maintained when the nozzle is closed, and the operator controls pressure in the hose from the fluid delivery end of the hose, protecting the hose from bulging or splitting, making the hose easier to handle, and conserving water. Other applications include protecting washing machine supply hoses from bursting and flooding; and pressure control of fire sprinkler, compressed gas, and pneumatic control systems. | 09-16-2010 |
20100319783 | HOT WATER SYSTEM AND THE CONTROL METHOD - It is an object of the present invention to provide a hot water system that quickly supplies hot water at user's desired temperature and reduce installation cost, and a method of controlling the same According to the present invention, the hot water system includes: a motor, a closing member that controls flow rate of water by rotation of the motor, and a control valve that controls the opening amount of a valve on the basis of output voltage according to a position of the closing member which is changed by the rotation of the motor; a flow rate information measuring unit that measures flow rate information to determine flow rate of water passing through the control valve; a control unit that sets flow rate of water by calculating desired flow rate of water in response to the flow rate information, which is measured by and inputted from the flow rate information measuring unit, and controlling the motor. | 12-23-2010 |
20110023968 | Liquid Vacuum Chemical Feeder System - A device and method for continuously controlling the flow rate of an aqueous chemical drawn into a flowing fluid stock includes a metering assembly drawing the aqueous chemical into the inlet of a metering assembly through a flow rate sensor and then through a metering device and into the flowing fluid stock. The flow sensor is monitored and an electronic controller can adjusts the flow rate of the aqueous chemical through the metering device in response to monitoring the flow rate sensor. An electronic controller can also change the direction of the flow of the aqueous chemical into the flowing fluid stock through one ejector to another ejector in response to monitoring at the metering assembly. | 02-03-2011 |
20120000542 | MASS FLOW CONTROLLER, MASS FLOW CONTROLLER SYSTEM, SUBSTRATE PROCESSING DEVICE, AND GAS FLOW RATE ADJUSTING METHOD - According to one embodiment, a flow rate adjusting unit is disposed on a gas passageway and includes a valve that adjusts the flow rate of a gas and an actuator that controls the displacement amount of the valve. A displacement amount storage unit stores displacement amount information in which a displacement amount of the valve, used when a gas flows into the gas passageway at a flow rate defined according to a process procedure before performing the process procedure, is obtained in advance for each process procedure. A setting circuit acquires the displacement amount corresponding to the process procedure from the displacement amount storage unit, and controls the actuator on the basis of the acquired displacement amount. | 01-05-2012 |
20120006415 | RINSING DEVICE AND METHOD FOR THE OPERATION THEREOF - The invention provides a rinsing device, in particular for endoscopy, comprising an electrically driven pump, in particular a peristaltic roller pump, as well as a method of operating such a device. A control device is provided to detect and/or adjust a flow rate. In order to avoid an excessively high pressure in case of an unintended stenosis, e.g. kinking of the supply tube, or also intended stenoses, e.g. insertion of a narrow rinsing probe, a current-measuring device is provided to detect a current being received by the pump. The control device is adapted such that when the flow rate exceeds a prespecified limiting value and at the same time the current exceeds a first predetermined current value, the flow rate is reduced to a safe flow-rate value. | 01-12-2012 |
20120080095 | VALVE SYSTEM - A valve system for monitoring and controlling a flow of a fluid additive into a main fluid line is disclosed. The system includes a pump that provides a constant flow of the additive from a fluid reservoir through a supply conduit into the main fluid line. A portion of the fluid additive may be diverted into one or more return conduits leading back to the reservoir by opening a solenoid actuated valve in the return conduit. Flow meters are employed to detect the flow rates of the fluids in the supply conduit and the main fluid line. The flow meters provide signals to a control system, which are effective to control the operation of the solenoid actuated valves to maintain a desired flow of the additive into the main fluid line. | 04-05-2012 |
20130118594 | LOW SHOCK STRENGTH INLET - Embodiments of the invention relate to a supersonic inlet having a cowl lip configured to capture the conic shock and exhibit a zero or substantially zero cowl angle. The inlet may be configured to employ a relaxed isentropic compression surface and an internal bypass. The nacelle bypass may prevent flow distortions, introduced by the capture of the conic shock, from reaching the turbomachinery, thereby allowing the cowl angle to be reduced to zero or substantially zero. Such a cowl angle may reduce the inlet's contribution to the overall sonic boom signature for a supersonic aircraft while allowing for an increase in engine pressure recovery and a subsequent improvement in generated thrust by the engine. | 05-16-2013 |
20130126001 | PROCESSING METHOD - A processing method performs a predetermined process to an object by supplying a process gas at a prescribed flow rate into a process container to which a gas supply unit and an exhaust system are connected. The processing method includes a first process of setting the gas supply unit to supply a process gas at a flow rate greater than the prescribed flow rate of a predetermined process for a predetermined short time from a gas channel while exhausting an atmosphere in the process container through the exhaust system; and a second process of setting the gas supply unit to supply the process gas at the prescribed flow rate from the gas channel after the first process is completed. | 05-23-2013 |
20130220432 | Fluid Flow Regulator - A fluid flow regulator has a body defining a tapered central passageway. A ferrous or magnetic ball is disposed within the central passageway and may be biased to a predetermined location within the passageway by a spring. An electromagnet is disposed at one end of the passageway. Varying electrical power to the electromagnet attracts or repels the ball thereby moving it to different locations within the tapered passageway to vary the flow through the passageway. | 08-29-2013 |
20130220433 | APPARATUS FOR DIVIDING AND SUPPLYING GAS AND METHOD FOR DIVIDING AND SUPPLYING GAS BY USE OF THIS APPARATUS - A gas dividing/supplying apparatus includes a pressure-type flow control system, a plurality of divided flow passages connected in parallel with each other and through which gas flowing from the pressure-type flow control system is divided and supplied to a process chamber, thermal-type mass flow sensors disposed in the divided flow passages, respectively, motor-operated valves disposed on a downstream side of the thermal-type mass flow sensors, respectively, and switching-type controllers that control opening and closing of the motor-operated valves, respectively, and, in the apparatus, the switching-type controllers perform switching between valve opening control for maintaining the motor-operated valves at a predetermined fixed valve opening degree based on a valve opening control command signal and divided flow control for regulating an opening degree of each of the motor-operated valves by feedback control based on a flow detection signal of the thermal-type mass flow sensor by a divided flow control command signal. | 08-29-2013 |
20130240045 | Method for Determining a Fluid Flow Rate With a Fluid Control Valve - A method for determining a fluid flow rate with a fluid control valve utilizes inherent characteristics of a particular valve in conjunction with easily measured parameters in order to determine a flow rate through the valve. A valve flow characteristic equation, a flow coefficient, and a rangeability for the valve are known and hardcoded into a chipset that controls the valve. A differential pressure transducer measures the pressure drop across the valve. A valve actuator controls the valve opening fraction. The differential pressure transducer and the valve actuator provide feedback signals to the chipset. The known and measured parameters are used to calculate an instantaneous valve characteristic and a fully-open flow rate for the valve. The instantaneous flow rate through the valve is then calculated from the instantaneous valve characteristic and the fully-open flow rate. | 09-19-2013 |
20130291951 | AUTOMATIC FLOW REGULATOR FOR FUME GUN - Systems and methods for automatically regulating the flow of fumes suctioned through a welding fume gun are provided. In certain embodiments, an automatic flow control assembly includes a vacuum system configured to suction a vacuum fume flow through an internal passage of a welding fume gun. The automatic flow control assembly also includes a sensor configured to measure a parameter related to the vacuum fume flow. The automatic flow control assembly further includes a flow regulation device configured to regulate an ambient air flow introduced into the vacuum fume flow. In addition, the automatic flow control assembly includes control circuitry configured to control the flow regulation device based at least in part on the measured parameter related to the vacuum fume flow. | 11-07-2013 |
20130306158 | METHOD FOR PRODUCING A GAS FLOW CONTAINING AN ESSENTIAL OIL VAPOUR, METHOD FOR TREATING A SITE WITH SUCH A GAS, AND RELATED DEVICE - The method includes the following steps:
| 11-21-2013 |
20130340836 | Overflow protection system for a fluid transfer system - In one embodiment, an overflow protection system for a fluid transfer system with an opening to the environment comprises at least one sensor and a fluid flow regulating device in communication with the at least one sensor, the fluid flow regulating device configured to change the rate of input fluid flow when a signal from the at least one sensor indicates a change in the output fluid flow rate. In another embodiment, an overflow protection system for a fluid transfer system provides an alert when a change is detected in the output fluid flow rate. In one embodiment, a method for overflow protection in a fluid transfer system with an opening to the environment comprises sensing a reduction in output fluid flow and reducing the input fluid flow or providing an alert. | 12-26-2013 |
20140096836 | METHOD AND AUTOMATED SYSTEM FOR CONTROL OF OIL WELL PRODUCTION AND MODULAR SKID FOR USE IN SAID METHOD - Automated measurement and oil well production control may be achieved by using a vertical separator, the discharge flow of which is continuously adjusted by setting the opening of a control valve, determined by the liquid level inside the separator. The automation of the control method allows real-time measurements of several process variables as well as reduced measurement times and also works as a safety layer for a production process. The control method is independent of well production and is therefore suited to controlling marginal wells. | 04-10-2014 |
20140116522 | FLUID CONDUIT ARRANGEMENT - A fluid conduit arrangement includes a reservoir containing a pressurized gas therein. An outer rigid conduit in communication with the reservoir contains a first working fluid under pressure from the pressurized gas within a dosed system defined by the reservoir and the outer rigid conduit. An inner flexible conduit is provided for conducting a second working fluid therethrough upon application of a supply pressure. The inner flexible conduit is disposed within the outer rigid conduit, and is subjected to the pressurized first working fluid in surrounding relationship therewith. Relative differences between the pressurized first working fluid and the second working fluid enable the inner flexible conduit to either expand and permit free flow of the second working fluid therethrough, or collapse and evacuate flow of the second working fluid therefrom. | 05-01-2014 |
20140130880 | ELECTRONIC AND MANUAL BACKUP FLOW CONTROL SYSTEMS - In various embodiments, an electronic flow selector of a fluid flow control system may be used to select a flow rate of a fluid. When the system is in an electronic mode, an encoder may electronically encode the fluid flow selection. A controller may receive the electronically encoded flow selection and transmit a corresponding control signal to an electronic valve to allow the fluid to flow at the selected flow rate. When the system is in a manual mode, backup manual flow selectors may be used to directly control the flow rate of a fluid. When the system is in a manual mode, the mechanical backup flow selectors may be in a deployed position. When the system is in an electronic mode, the mechanical backup flow selectors may be in a retracted position. Particular applications to gases and anesthesia delivery are disclosed herein. | 05-15-2014 |
20140130881 | ELECTRONIC AND MANUAL BACKUP FLOW CONTROL SYSTEMS - In various embodiments, an electronic flow selector of a fluid flow control system may be used to select a flow rate of a fluid. When the system is in an electronic mode, an encoder may electronically encode the fluid flow selection. A controller may receive the electronically encoded flow selection and transmit a corresponding control signal to an electronic valve to allow the fluid to flow at the selected flow rate. When the system is in a manual mode, mechanical backup flow selectors may be used to directly control the flow rate of a fluid. When the system is in a manual mode, the mechanical backup flow selectors may be in a deployed position. When the system is in an electronic mode, the mechanical backup flow selectors may be in a retracted position. Particular applications to gases and anesthesia delivery are disclosed herein. | 05-15-2014 |
20140130882 | VALVE ASSEMBLY FOR CONTROLLING THE FLOW RATE OF A FLUID - In various embodiments, an electronic flow selector of a fluid flow control system may be used to select a flow rate of a fluid. The fluid flow control system may be operated in an electronic mode and a manual mode. When the system is in a manual mode, mechanical backup flow selectors may be used to select the flow rate of a fluid. The mechanical backup flow selectors may include a position detection system to determine the flow rate of a fluid. Flow selectors of the flow control system may be rotationally engaged with the valve shafts of each needle valve, while allowing them to translate axially. The flow selectors may remain axially fixed while the valve shafts are axially translated with respect to the needle valves in a fluid flow control system. | 05-15-2014 |
20140150883 | METHOD AND DEVICES FOR EQUALIZING A GROUP OF CONSUMERS IN A FLUID TRANSPORT SYSTEM - For the purpose of balancing (S | 06-05-2014 |
20140150884 | ELECTRONIC FLOW SENSOR - A safety shut-off device is provided for a liquid gas system for vehicles and/or vehicle trailers, in order to avoid an inadvertent release of gas. The device includes an electromagnetic gas valve for supplying/shutting off the gas, an electronic unit for activating the electromagnetic gas valve, and a flow sensor for determining a current gas flow being discharged from a storage tank. Furthermore, the device includes an evaluation unit for comparing the current gas flow to a previous gas flow or to a gas flow which is indicated by the gas consumers and is to be expected. If, during use, the evaluation unit determines a current gas flow which differs by more than a maximum permissible rate of change from the previous gas flow or from an expected gas flow, the electromagnetic gas valve is activated via the electric unit in order to shut off the supply of gas. | 06-05-2014 |
20140158211 | System for and Method of Providing Pressure Insensitive Self Verifying Mass Flow Controller - A mass flow controller comprises: a pressure-based flow meter, a thermal-based flow meter, a control valve, and a system controller. The pressure-based flow meter and thermal-based flow meter each measure flow rate of mass through the mass flow controller. The control valve controls the flow rate in response to a control signal generated as a function of the flow rate as measured by thermal-based flow meter when the measured flow rate is relatively low, and as a function of the flow rate as measured by the pressure-based flow meter when the flow rate is relatively high. A comparison of the flow measurements of the two flow meters can be used to (a) sense pressure disturbances at low flow rates, and (b) sense when the thermal-based flow meter is out of calibration so that a zero offset signal can be applied to the thermal-based flow meter. | 06-12-2014 |
20140174549 | PROPORTIONAL FLOW CONTROL OF A FLUID PUMP ASSEMBLY - A pump control assembly having a flow control assembly disposed between the first end of a load sensing valve and a fluid pump is disclosed. The flow control assembly may include an orifice, a first valve assembly, and a second valve assembly. When the first valve assembly is in an open position and the second valve assembly is in a first position, fluid passing through the orifice is directed to a fluid reservoir and to the load sensing valve. When the first valve assembly is in a closed position and the second valve assembly is in a second position, all fluid passing through the orifice is directed to the load sensing valve. An electronic controller can be configured to transmit an output current to the first and second valve assemblies in response to an operational parameter of a prime mover supplying power to the fluid pump. | 06-26-2014 |
20140182692 | PRESSURE TYPE FLOW CONTROL SYSTEM WITH FLOW MONITORING - A pressure type flow control system with flow monitoring includes an inlet side passage, a control valve comprising a pressure-type flow control unit connected downstream of the inlet side passage, a thermal-type flow sensor connected downstream of the control valve, an orifice installed on a fluid passage connected downstream of the thermal-type flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet side passage connected to the orifice, and a control unit comprising a pressure-type flow rate arithmetic and control unit to which a pressure signal from the pressure sensor and a temperature signal from the temperature sensor are input, and which computes a flow rate value of fluid flowing through the orifice, and outputs a control signal to a valve drive unit of the control valve. | 07-03-2014 |
20140209178 | Fluid Regulator With Integrated Rapid Pressurization Bypass Valve - A fluid flow control device includes a regulator for operating at high pressures and an integral bypass valve. The regulator and the bypass valve each include a control assembly that is movable between an open position and a closed position. The regulator and bypass valves are biased into the open positions and adapted to move into the closed positions when an operating pressure rises to above respective regulator and bypass set-point pressures. The bypass set-point pressure is lower than the regulator set-point pressure such that when the operating pressure rises above the bypass set-point pressure, the bypass valve automatically closes and allows the regulator to perform under normal operating conditions. So configured, the bypass valve is arranged to accommodate at least some of the fluid flow through the system until the operating pressure reaches the normal operating pressure, which is somewhere between the bypass and regulator set-point pressures. | 07-31-2014 |
20140230910 | SPLIT-CHANNEL GAS FLOW CONTROL - An apparatus comprises a proportional valve, a first channel connected to the proportional valve, a flow sensor connected to the first channel and configured to measure gas flow in the first channel, a split channel connected to the first channel at a location between the proportional valve and the flow sensor, and a control component connected between the flow sensor and the proportional valve and configured to control gas flow in the first channel. | 08-21-2014 |
20140230911 | PRESSURE TYPE FLOW CONTROL SYSTEM WITH FLOW MONITORING, AND METHOD FOR DETECTING ANOMALY IN FLUID SUPPLY SYSTEM AND HANDLING METHOD AT ABNORMAL MONITORING FLOW RATE USING THE SAME - A pressure type flow control system with flow monitoring includes an inlet, a control valve including a pressure flow control unit connected downstream of the inlet, a thermal flow sensor connected downstream of the control valve, an orifice installed on a fluid passage communicatively connected downstream of the thermal flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet communicatively connected to the orifice, and a control unit including a pressure type flow rate arithmetic and control unit receiving a pressure signal from the pressure sensor and a temperature signal from the temperature sensor, and a flow sensor control unit to which a flow rate signal from the thermal flow sensor is input. | 08-21-2014 |
20140246097 | MASS FLOW CONTROLLER AND METHOD FOR IMPROVED PERFORMANCE ACROSS FLUID TYPES - A system and method for improving the control of a flow of a variety of fluid types is described. The method includes selecting a process gas type for the process gas that will be controlled and obtaining molecular mass information for the selected processed gas type. General characterization data is obtained that includes, for each of a plurality of flow and pressure value pairs, a corresponding control signal value and operating characterization data is generated by modifying the flow values in the general characterization data according to the equation F | 09-04-2014 |
20140261714 | Advanced Valve Actuator With True Flow Feedback - A valve and actuator assembly that includes a valve configured to control a flow of liquid into a coil or heat exchanger. The valve and actuator assembly further includes a valve actuator configured to control opening and closing of the valve via positioning of a valve closure member. The valve actuator is further configured to provide both a maximum flow rate and a minimum flow rate of the liquid through the valve. In an embodiment, the valve actuator includes a valve closure member position sensor configured to determine the position of the valve closure member based on a flow rate of the liquid through the valve. | 09-18-2014 |
20140305507 | SELF-ORGANIZING MULTI-STREAM FLOW DELIVERY PROCESS AND ENABLING ACTUATION AND CONTROL - A Self-Organizing Multi-Stream Flow Delivery Process and Enabling Actuation and Control are introduced. The method and apparatus of building a general-purpose self-organizing multi-stream flow delivery process are presented. As a case example, an actuation and control system to control a multi-stream liquid flow delivery process using Self-Organizing Actuation and Control Units (SOACU) is described. | 10-16-2014 |
20150027552 | FLUID SUPPLY SYSTEM, WAFER PROCESSING SYSTEM, AND METHOD OF SUPPLYING FLUID TO WAFER PROCESSING EQUIPMENT - A fluid supply system includes a pressure tank configured to contain a pressurized gas and a fluid, a delivery point configured to be connected to a point of use, a recirculation piping connecting the pressure tank to the delivery point, and a return pump connected to the recirculation piping. The recirculation piping defines a circulation path for the fluid from the pressure tank through the delivery point and back to the pressure tank. The return pump is downstream of the delivery point and upstream of the pressure tank in the circulation path. | 01-29-2015 |
20150301534 | PIPELINE SYSTEM FOR FLUIDS - The invention provides method and system of controlling flow rate in a pipeline network for fluids. The system includes a demand management system to monitor fluid flow rate in the pipeline network ( | 10-22-2015 |
20150323361 | METHOD OF, AND APPARATUS FOR, REGULATING THE MASS FLOW RATE OF A GAS - There is provided a method of automatically controlling the mass flow rate of a gas through an orifice through which, in use, choked flow is arranged to occur. The method uses an electronic valve located downstream of a gas source, a piezoelectric oscillator in contact with the gas upstream of the orifice and downstream of the electronic valve and a temperature sensor. The method comprises: a) driving the piezoelectric crystal oscillator at a resonant frequency b) measuring the resonant frequency of the piezoelectric oscillator c) measuring the temperature of the gas; and d) controlling the electronic valve in response to the resonant frequency of the piezoelectric oscillator and the temperature of the gas in order to regulate the mass flow rate of gas through said orifice. | 11-12-2015 |
20160022113 | METHOD FOR CONTROLLING FILLING WITH WATER OF A WATER-CONDUCTING ELECTRIC HOUSEHOLD APPLIANCE - A method of controlling the filling with water of a household appliance after treatment including activating a wash pump to a first speed, opening a load valve and starting a time counter, closing the valve and stopping the counter, calculating a flow-rate, opening and closing the valve again based on the calculated flow-rate. | 01-28-2016 |
20160033973 | FLOW RATE CONTROL APPARATUS, STORAGE MEDIUM STORING PROGRAM FOR FLOW RATE CONTROL APPARATUS AND FLOW RATE CONTROL METHOD - In order to keep a stable flow rate at a set flow rate value when a pressure fluctuation occurs in an upstream side of a valve, without providing an additional sensor for detecting a pressure fluctuation, a flow rate control apparatus is provided with: the valve; a flow rate sensor; a valve control part configured to control the valve so that a deviation between a set flow rate value and a measurement flow rate value is reduced, on the basis of the deviation and a set control coefficient; and a control coefficient setting part configured to set the control coefficient so that when a pressure rise occurs in the upstream side of the valve, a decreased amount in flow due to a decreased opening of the valve and an increased amount in flow due to an increased amount of a differential pressure before and after the valve, are balanced. | 02-04-2016 |
20160061337 | Dual Piston Valve for Flow Control of Two Distinct Liquid Fuels - A dual piston valve system to control and contain two distinct liquid fuels available to the valve while allowing full flow through the valve of whichever one of the fuels is selected and preventing any cross leakage between the fuels. | 03-03-2016 |
20160091112 | Noise and Drag Reducing Cabin Pressure Outflow Valve - A system and method for regulating pressure inside a vehicle (“cabin pressure”) is disclosed. The system can include a forward gate and an aft gate that can be moved from a closed position to an open position to release cabin pressure in a controlled manner. The forward gate, the aft gate, or both can comprise an interior cavity and one or more permeable surfaces. When open, or partially open, an airflow can be created by a pressure differential between the cabin pressure and the pressure outside the vehicle (“atmospheric pressure”). At least a portion of the airflow can flow through the one or more permeable surfaces and the hollow cavity of the forward gate, the aft gate, or both to promote laminar flow through the gates and into the atmosphere alongside the vehicle (e.g., an aircraft fuselage). In this manner, flow efficiency can be increased and noise reduced. | 03-31-2016 |
20160168828 | DRINKING WATER SUPPLY DEVICE AND METHOD OF CONTROLLING A DRINKING WATER SUPPLY DEVICE | 06-16-2016 |