Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Polycrystalline or amorphous semiconductor

Subclass of:

136 - Batteries: thermoelectric and photoelectric

136243000 - PHOTOELECTRIC

136252000 - Cells

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20080196761Photovoltaic device and process for producing same - A photovoltaic device and a process for producing the photovoltaic device that combine a high photovoltaic conversion efficiency with a high level of productivity. The photovoltaic device includes at least a transparent electrode-bearing substrate, prepared by providing a transparent electrode layer on a transparent, electrically insulating substrate, and a photovoltaic layer containing mainly crystalline silicon-based semiconductors and a back electrode layer formed sequentially on the transparent electrode layer of the transparent electrode-bearing substrate, wherein the surface of the transparent electrode layer of the transparent electrode-bearing substrate has a shape that contains a mixture of coarse and fine roughness, and exhibits a spectral haze ratio of 20% or greater for wavelengths of from 550 nm to 800 nm, and the photovoltaic layer containing mainly crystalline silicon-based semiconductors has a film thickness of from 1.2 μm to 2 μm, and a Raman ratio of from 3.0 to 8.0.08-21-2008
20080223439Interconnected Photoelectrochemical Cell - An interconnected photoelectrochemical (PEC) cell (09-18-2008
20080223440MULTI-JUNCTION SOLAR CELLS AND METHODS AND APPARATUSES FOR FORMING THE SAME - Embodiments of the present invention generally relate to solar cells and methods and apparatuses for forming the same. More particularly, embodiments of the present invention relate to thin film multi-junction solar cells and methods and apparatuses for forming the same.09-18-2008
20080251123METHOD FOR PRODUCING A SOLAR CELL AND A SOLAR CELL PRODUCED ACCORDING TO SAID METHOD - The problem posed by both conventional and novel crystalline silicon solar cells is the electrical isolation of layers doped with p and n conductivity types. The invention solves said problem in a simple and elegant manner. A masking paste is applied locally to at least one side of the silicon substrate and is subsequently dried. A doping material diffusion is then carried out, whereby the conductivity type of the doping material is in opposition to that of the base doping of the crystalline silicon substrate. In one of the subsequent production steps of the solar cell, the electric contacts are applied in such a way that at least one section of said contacts is isolated electrically from the rest of the contact by the masking paste. The masking paste thus allows an electrical isolation of the two external contacts of a solar cell by preventing the diffusion of one doping material using said paste. Other methods that achieve the same results are substantially more complex and expensive to use.10-16-2008
20080271783PHOTOVOLTAIC DEVICE AND MANUFACTURING METHOD THEREOF - There is provided a photovoltaic device in which at least one pin-junction is formed in a thin film semiconductor deposited on a substrate, the substrate including: a base including polycrystalline silicon; and a polycrystalline silicon layer formed on the base by liquid phase growth, in which at least a part of a surface of the polycrystalline silicon layer has unevenness composed of facet surfaces. The photovoltaic device prevents a reduction in photoelectric conversion efficiency due to the absence of preferable unevenness, an increase in cost due to the use of an expensive material, and a reduction in throughput in the photovoltaic device, and has a preferable characteristic and high productivity.11-06-2008
20080283120Method of Manufacturing N-Type Multicrystalline Silicon Solar Cells - The invention provides solar cells and methods of manufacturing solar cells having a Hetero-junction with Intrinsic Thin-layer (HIT) structure using an n-type multicrystalline silicon substrate. An n-type multicrystalline silicon substrate is subjected to a phosphorus diffusion step using a relatively high temperature. The front side diffusion layer is then removed. As a next step, a p-type silicon thin film is deposited at the front side of the substrate. This sequence avoids heating the p-type silicon thin film above its deposition temperature, and maintains the quality of the p-type silicon thin film.11-20-2008
20080289689CONCENTRATING MODULE AND METHOD OF MANUFACTURE FOR PHOTOVOLTAIC STRIPS - A glass concentrator for manufacture of solar energy conversion module is provided including a webbing that has a load sustenance characteristic and a hail impact resistance characteristic based on a first thickness of the webbing. The concentrator also includes a plurality of elongated concentrating elements integrally formed with the webbing. Each of the elongated concentrating elements has an aperture region, an exit region and two side regions, which bears a geometric concentration characteristic provided by a highly reflective side regions and an aperture-to-exit scale ratio in a range from about 1.8 to about 4.5. The glass concentrator can be attached with a plurality of photovoltaic strips cumulatively on each and every exit regions and clamped with a rigid or flexible back cover member to form a solar concentrator module for converting sunlight to electric energy. The solar concentrator module based on certain embodiments meets the industrial qualification standards.11-27-2008
20090007964Method for producing a thin-film solar cell by use of microcrystalline silicon and a layer sequence - The invention relates to a method for production of a thin-layer solar cell with microcrystalline silicon and a layer sequence. According to the invention, a microcrystalline silicon layer is applied to the lower p- or n-layer in pin or nip thin-layer solar cells, by means of a HWCVD method before the application of the microcrystalline i-layer. The efficiency of the solar cell is hence increased by up to 0.8% absolute.01-08-2009
20090007965SOLAR CELL DEVICE HAVING AMORPHOUS SILICON LAYERS - Devices, solar cell structures, and methods of fabrication thereof, are disclosed.01-08-2009
20090014066Thin-Film Photoelectric Converter - The present invention provides a three-junction thin-film photoelectric converter having high conversion efficiency at low cost by improving the film quality of the crystalline silicon photoelectric conversion layer and improving the light trapping effect.01-15-2009
20090014067PHOTOVOLTAIC ASSEMBLY - A photovoltaic assembly includes a photovoltaic panel and a light leveling element. The photovoltaic panel includes a plurality of spaced photosensitive regions for receiving and converting light energy into electric energy. The light leveling element is disposed above the photovoltaic panel. The light leveling element includes a base, a plurality of first lenses and a plurality of second lenses. The first lenses are arranged on a central portion of the base. The second lenses are disposed on a peripheral portion of the base. The first and the second lenses are vertically aligned with the respective photosensitive regions. The refraction indices of the first lenses are less than that of the second lenses.01-15-2009
20090032099SOLAR CELL WITH FLEXIBLE SUBSTRATE - An exemplary solar cell includes a flexible substrate, a back metal contact layer, a P-type semiconductor layer, a P-N junction layer, an N-type semiconductor layer, and a front metal contact layer. The substrate is made of polymer. The back metal contact layer is formed on the substrate. The P-type semiconductor layer is formed on the back metal contact layer. The P-N junction layer is formed on the P-type semiconductor layer. The N-type semiconductor layer is formed on a P-N junction layer. The front metal contact layer is formed on the N-type semiconductor layer.02-05-2009
20090038682Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell - A semiconductor substrate for a solar cell, comprising the semiconductor substrate having a surface which constitutes a light incident face of the solar cell and having a surface irregularities structure, wherein the surface has an surface area from 1.2 to 2.2 times that of an imaginary smooth face and the standard deviation of the heights of the irregularities is 1.0 μm or less.02-12-2009
20090071539SOLAR CELL MANUFACTURED USING AMORPHOUS AND NANOCRYSTALLINE SILICON COMPOSITE THIN FILM, AND PROCESS FOR MANUFACTURING THE SAME - Disclosed are a solar cell manufactured using a composite thin film comprising amorphous silicon and nanocrystalline silicon, a method of manufacturing the solar cell, and a composition for the composite thin film used in manufacturing the solar cell. More particularly, a silicon semiconductor layer in the solar cell is fabricated by using the composite thin film comprising the amorphous silicon and the nanocrystalline silicon, the composite thin film being formed by dispersing nanoparticles of the crystalline silicon in a liquid silicon precursor and modifying them.03-19-2009
20090095348Method for Producing a Solar Cell with Functional Structures and a Solar Cell Produced Thereby - A solar cell has a p-n-junction which is parallel to an irradiated surface, and functional structures which are located on the surface of the solar cell. In a method for producing such a solar cell, a semiconductor material is doped on both sides for forming the p-n junction and the functional structures are disposed a surface of the solar cell.04-16-2009
20090120498PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR MANUFACTURING THE SAME - A photoelectric conversion device with an excellent photoelectric conversion characteristic with a silicon semiconductor material effectively utilized. The photoelectric conversion device includes a first unit cell including a first electrode, a first impurity semiconductor layer, a single crystal semiconductor layer, and a second impurity semiconductor layer; and a second unit cell including a third impurity semiconductor layer, a non-single-crystal semiconductor layer, a fourth impurity semiconductor layer, and a second electrode. The second and third impurity semiconductor layers are in contact with each other so that the first and second unit cells are connected in series, and an insulating layer is provided for a surface of the first electrode and bonded to a supporting substrate.05-14-2009
20090126791Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index - Certain example embodiments of this invention relate to an electrode (e.g., front electrode) for use in a photovoltaic device or the like. In certain example embodiments, a transparent conductive oxide (TCO) of the front electrode for use in a photovoltaic device is of or includes titanium oxide doped with one or more of Nb, Zn and/or Al. Additional layers may also be provided in the front electrode in certain example embodiments. It has been found that the use of transparent conductive TiO05-21-2009
20090139571SOLAR CELL AND MANUFACTURING METHOD THEREOF - A solar cell and a manufacturing method thereof are provided herein. The solar cell includes a substrate with a first transparent conductive layer, a micro- or nano-roughing structure formed on the first transparent conductive layer, and a semiconductor active layer formed on the micro- or nano-roughing structure and covering the micro- or nano-roughing structure.06-04-2009
20090165853Stacked-Type Photoelectric Conversion Device - The present invention makes it possible to provide a stacked-type thin-film photoelectric conversion device having high photostability, at a high yield rate and significantly reduced production costs. In a stacked-type photoelectric conversion device having an amorphous silicon-based photoelectric conversion unit and a crystalline silicon-based photoelectric conversion unit stacked thereon or vice versa, an amorphous photoelectric conversion layer included in the amorphous photoelectric conversion unit has a thickness of at least 0.03 μm and less than 0.17 μm, a crystalline photoelectric conversion layer included in the crystalline photoelectric conversion unit has a thickness of at least 0.2 μm and less than 1.0 μm, and a silicon oxide layer of a first conductivity type included in the amorphous photoelectric conversion unit and a silicon layer of a second conductivity type included in the crystalline photoelectric conversion unit make a junction.07-02-2009
20090165854PHOTOELECTRIC CONVERSION DEVICE AND MANUFACTURING METHOD THEREOF - A photoelectric conversion device includes a first unit cell in which one face of a single crystal semiconductor layer is provided with a first electrode and a first impurity semiconductor layer including one conductivity type and an opposite face is provided with a second impurity semiconductor layer including a conductivity type opposite to the one conductivity type, and a second unit cell including a p-type organic semiconductor and an n-type organic semiconductor. The first unit cell and the second unit cell are connected in series with an intermediate layer interposed therebetween. The intermediate layer includes a transition metal oxide. A face of the first electrode which is opposite to the single crystal semiconductor layer is provided with an insulating layer, and the insulating layer is bonded to a supporting substrate.07-02-2009
20090183771PLASMA PROCESSING APPARATUS, PLASMA PROCESSING METHOD AND PHOTOELECTRIC CONVERSION ELEMENT - In the case of performing at least two plasma processing steps in a common plasma reaction chamber, a CW AC power or a pulse-modulated AC power is appropriately selected as a power for plasma processing in each step. Thereby, even in a step where plasma processing conditions are limited due to apparatus configurations, the plasma processing can be performed in more various manners. Further, uniform plasma can be generated between electrodes and a quantity of a power to be supplied between the electrodes can be reduced, by using the pulse-modulated AC power. Thereby, a plasma processing speed can be reduced so that throughput control is facilitated.07-23-2009
20090183772POLYCRYSTALLINE SILICON SOLAR CELL HAVING HIGH EFFICIENCY AND METHOD FOR FABRICATING THE SAME - Disclosed herein is a method of forming a light-absorbing layer of a polycrystalline silicon solar cell, including: forming a polycrystalline silicon layer on a back electrode; forming an intrinsic amorphous silicon layer on the polycrystalline silicon layer; and heat-treating the transparent insulating substrate to vertically crystallize the intrinsic amorphous silicon layer using the polycrystalline silicon layer as a seed for crystallization through a metal induced vertical crystallization (MIVC) process to form the intrinsic amorphous silicon layer into a light-absorbing layer made of polycrystalline silicon, and is a method of fabricating a high-efficiency polycrystalline silicon solar cell using the light-absorbing layer.07-23-2009
20090194162METHOD TO FORM A PHOTOVOLTAIC CELL COMPRISING A THIN LAMINA - A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.08-06-2009
20090194163METHOD TO FORM A PHOTOVOLTAIC CELL COMPRISING A THIN LAMINA - A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.08-06-2009
20090194164METHOD TO FORM A PHOTOVOLTAIC CELL COMPRISING A THIN LAMINA - A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.08-06-2009
20090211635Photovoltaic Conversion Element and Manufacturing Method Therefor, and Photovoltaic Conversion Module Using Same - A photovoltaic conversion element includes a one conductivity-type crystalline Si semiconductor; an opposite conductivity-type semiconductor which is joined to the crystalline Si semiconductor to form a pn junction therebetween; an electrode provided on the opposite conductivity-type semiconductor; and a depletion region formed from the side of the one conductivity-type crystalline Si semiconductor to the side of the opposite conductivity-type semiconductor across the pn junction formed therebetween. The depletion region has a first depletion region located inside the crystalline Si semiconductor and under the electrode, and the first depletion region has an oxygen concentration of 1E18 [atoms/cm08-27-2009
20090217979Dye Sensitization Photoelectric Converter - A dye sensitization photoelectric converter with enhanced light absorptance and photoelectric conversion efficiency is provided. A dye sensitization photoelectric converter 09-03-2009
20090235983Interlayer Design for Epitaxial Growth of Semiconductor Layers - An interlayer structure that, in one implementation, includes a combination of an amorphous or nano-crystalline seed-layer, and one or more metallic layers, deposited on the seed layer, with the fcc, hcp or bcc crystal structure is used to epitaxially orient a semiconductor layer on top of non-single-crystal substrates. In some implementations, this interlayer structure is used to establish epitaxial growth of multiple semiconductor layers, combinations of semiconductor and oxide layers, combinations of semiconductor and metal layers and combination of semiconductor, oxide and metal layers. This interlayer structure can also be used for epitaxial growth of p-type and n-type semiconductors in photovoltaic cells.09-24-2009
20090255581THIN FILM SILICON SOLAR CELL AND MANUFACTURING METHOD THEREOF - A thin film silicon solar cell comprises a front transparent electrode, a p-type window layer, a buffer layer, an i-type absorber layer, an n-type layer and a metal rear electrode. The front transparent electrode is stacked on a transparent substrate. The p-type window layer is stacked on the front transparent electrode, and has a thickness in a range of 12 nm to 17 nm. The buffer layer is stacked on the p-type window layer, and has a carbon concentration in a range of 0.5 to 3.0 atomic % and a thickness in a range of 3 to 8 nm. The i-type absorber layer is stacked on the buffer layer. The n-type layer is stacked on the i-type absorber layer. The metal rear electrode is stacked on the n-type layer.10-15-2009
20090272435COMPOSITIONALLY-GRADED AND STRUCTURALLY-GRADED PHOTOVOLTAIC DEVICES AND METHODS OF FABRICATING SUCH DEVICES - A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.11-05-2009
20090277504PHOTOELECTRIC CONVERSION DEVICE AND MANUFACTURING METHOD THEREOF - Higher conversion efficiency and productivity of photoelectric conversion devices. A semiconductor layer including a first and second crystal regions grown in the layer-deposition direction is provided between an impurity semiconductor layer containing an impurity element imparting one conductivity type and an impurity semiconductor layer containing an impurity element imparting a conductivity type opposite to the one conductivity type. The first crystal region is grown from the interface between one of the impurity semiconductor layers and the semiconductor layer. The second crystal region is grown toward the interface between the semiconductor layer and the other of the impurity semiconductor layers from a position which is away from the interface between the one of the impurity semiconductor layers and the semiconductor layer. The semiconductor layer including the first and second crystal regions which exist in an amorphous structure forms the main part of a region for photoelectric conversion.11-12-2009
20090293954Photoelectric Conversion Device And Method For Manufacturing The Same - A photoelectric conversion device and a method for manufacturing the same are provided. The photoelectric conversion device includes a first semiconductor layer including a first impurity element over a substrate, a second semiconductor layer including an amorphous layer and a crystal over the first semiconductor layer, and a third semiconductor layer including a second impurity element over the second semiconductor layer. The crystal penetrates between the first semiconductor layer and the third semiconductor layer.12-03-2009
20090308453HETEROJUNCTION WITH INTRINSICALLY AMORPHOUS INTERFACE - The invention relates to a structure (12-17-2009
20090314346SOLAR CELL AND MANUFACTURING METHOD OF THE SOLAR CELL - A p type amorphous silicon layer is stacked, by a CVD method, on a main surface of an n type single-crystalline silicon substrate; an n type amorphous silicon layer is stacked, by the CVD method, on a surface opposite to the surface on which the p type amorphous silicon layer is stacked; and, by using a laser ablation processing method, through-holes are formed in the n type single-crystalline silicon substrate, the p type amorphous silicon layer, and the n type amorphous silicon layer. Subsequently, an insulating layer is formed on an inner wall surface of each of the through-holes, and then a conductive material is filled therein.12-24-2009
20100006150DYE-SENSITIZED SOLAR CELL, AND ELECTRODE AND LAMINATED FILM FOR THE SAME - A laminated film comprising a porous semiconductor layer, a transparent conductive layer and a transparent plastic film, wherein 01-14-2010
20100032014PHOTOVOLTAIC DEVICE WITH A DISCONTINUOUS INTERDIGITATED HETEROJUNCTION STRUCTURE - A photovoltaic device which includes: a) a substrate based on a crystalline semi-conductor material; b) a first electrode which includes at least one heterojunction made on one face, referred to as the rear face, of the substrate, where this heterojunction includes a layer based on a doped amorphous semi-conductor material; and c) a second electrode. The first and second electrodes are arranged on the rear face of the substrate according to an interdigitated combs design, and where the layer includes multiple portions of the doped amorphous semi-conductor material which are unconnected and spaced apart from each other.02-11-2010
20100043881TITANIUM DIOXIDE THIN FILM SYSTEMS AND METHOD OF MAKING SAME - A method for producing a thin film titanium dioxide is disclosed. The disclosed method for producing the thin film titanium dioxide includes performing a magnetron reactive sputtering process to vaporize at least portions of a titanium source in a sputtering chamber that is supplied with gaseous oxygen. The vaporized titanium reacts with the oxygen to form anatase titanium dioxide, which is deposited on a substrate within the sputtering chamber.02-25-2010
20100059117HYBRID SILICON SOLAR CELLS AND METHOD OF FABRICATING SAME - A solar cell is provided in which an amorphous semiconductor layer (03-11-2010
20100071765METHOD FOR FABRICATING A SOLAR CELL USING A DIRECT-PATTERN PIN-HOLE-FREE MASKING LAYER - A method for fabricating a solar cell is described. The method includes first providing a substrate having a dielectric layer disposed thereon. A pin-hole-free masking layer is then formed above the dielectric layer. Finally, without the use of a mask, the pin-hole-free masking layer is patterned to form a patterned pin-hole-free masking layer.03-25-2010
20100071766Semiconductor device having a multi-layer substrate and a method of forming the semiconductor device - A semiconductor device is provided in accordance with an exemplary embodiment. The semiconductor device includes a semiconductive layer disposed over a multi-layer substrate. The multi-layer substrate includes a plurality of dissimilar regions, one of which is an inner magnetic region and the remainder of the multi-layer substrate is thermally symmetrical about the inner magnetic region.03-25-2010
20100071767PHOTOELECTRIC CONVERSION DEVICE AND MANUFACTURING METHOD THEREOF - An object is to increase conversion efficiency of a photoelectric conversion device without increase in the manufacturing steps. The photoelectric conversion device includes a first semiconductor layer formed using a single crystal semiconductor having one conductivity type which is formed over a supporting substrate, a buffer layer including a single crystal region and an amorphous region, a second semiconductor layer which includes a single crystal region and an amorphous region and is provided over the buffer layer, and a third semiconductor layer having a conductivity type opposite to the one conductivity type, which is provided over the second semiconductor layer. A proportion of the single crystal region is higher than that of the amorphous region on the first semiconductor layer side in the second semiconductor layer, and the proportion of the amorphous region is higher than that of the single crystal region on the third semiconductor layer side.03-25-2010
20100078071PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR MANUFACTURING THE SAME - A photoelectric conversion device includes one or more unit cells between a first electrode and a second electrode, in which a semiconductor junction is formed by sequentially stacking: a first impurity semiconductor layer of one conductivity type; an intrinsic non-single-crystal semiconductor layer including an NH group or an NH04-01-2010
20100084016Intermediate Thermal Expansion Coefficient Glass - Aluminoborosilicate glasses which may be useful in photovoltaic, photochromic, electrochromic, or Organic Light Emitting Diode (OLED) lighting applications are described.04-08-2010
20100089449HIGH EFFICIENCY SOLAR CELL AND MANUFACTURING METHOD THEREOF - The present invention relates to a high efficiency solar cell and a manufacturing method thereof. The high efficiency solar cell of the present invention comprises a lower solar cell layer comprising a single crystalline silicon-based pn thin film; an upper solar cell layer stacked on the upper portion of the lower solar cell layer and comprising an amorphous silicon-based pin thin film; and a glass substrate formed on the upper portion of the upper solar cell layer to receive sunlight. According to the present invention, it has an effect that a low-cost high efficiency solar cell can be manufactured.04-15-2010
20100116334VHF ENERGIZED PLASMA DEPOSITION PROCESS FOR THE PREPARATION OF THIN FILM MATERIALS - A VHF energized plasma deposition process wherein a process gas is decomposed in a plasma so as to deposit the thin film material onto a substrate, is carried out at process gas pressures which are in the range of 0.5-2.0 torr, with substrate temperatures that do not exceed 300° C., and substrate-cathode spacings in the range of 10-50 millimeters. Deposition rates are at least 5 angstroms per second. The present method provides for the high speed deposition of semiconductor materials having a quality at least equivalent to materials produced at a much lower deposition rate.05-13-2010
20100116335LOW-COST MULTI-JUNCTION SOLAR CELLS AND METHODS FOR THEIR PRODUCTION - Solar cells fabricated without gasification of metallurgical-grade silicon. The substrates are prepared by: melting metallurgical grade silicon in a furnace; solidifying the melted metallurgical grade silicon into an ingot; slicing the ingot to obtain a plurality of wafers; polishing and cleaning each wafer; depositing aluminum layer on backside of each wafer; depositing a layer of hydrogenated silicon nitride on front surface of each wafer; annealing the wafers at elevated temperature; removing the hydrogenated silicon nitride; and, removing the aluminum layer. The front surface may be textured prior to forming the solar cell. The solar cell structure comprises a metallurgical grade doped silicon substrate and a thin-film structure formed over the substrate to form a p-i-n junction with the substrate. The substrate may be doped p-type, and the thin film structure may be an intrinsic amorphous layer formed over the substrate and an n-type amorphous layer formed over the intrinsic layer.05-13-2010
20100132791HIGH EFFICIENCY SOLAR CELL, METHOD OF FABRICATING THE SAME AND APPARATUS FOR FABRICATING THE SAME - A method of fabricating a solar cell includes: sequentially forming a first electrode and a first impurity-doped semiconductor layer on a transparent substrate; forming a first intrinsic semiconductor layer on the first impurity-doped semiconductor layer; heating the first intrinsic semiconductor layer to form a second intrinsic semiconductor layer; and sequentially forming a second impurity-doped semiconductor layer and a second electrode on the second intrinsic semiconductor layer.06-03-2010
20100132792SOLAR CELL AND METHOD OF MANUFACTURING THE SAME - A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate, at least one emitter layer on the substrate, at least one first electrode electrically connected to the at least one emitter layer, and at least one second electrode electrically connected to the substrate. At least one of the first electrode and the second electrode is formed using a plating method.06-03-2010
20100139766PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR MANUFACTURING THE PHOTOELECTRIC CONVERSION DEVICE - A highly-efficient photoelectric conversion device is provided without complicating the manufacturing process. The photoelectric conversion device includes a unit cell having a semiconductor junction, in which a first impurity semiconductor layer having one conductivity type, a semiconductor layer including a first semiconductor region having a larger proportion of a crystalline semiconductor than an amorphous semiconductor and a second semiconductor region having a larger proportion of an amorphous semiconductor than a crystalline semiconductor and including both a radial crystal and a crystal having a needle-like growing end in the amorphous semiconductor, and a second impurity semiconductor layer having a conductivity type opposite to the conductivity type of the first impurity semiconductor layer are stacked in this order.06-10-2010
20100147379SILICON-BASED THIN-FILM PHOTOELECTRIC CONVERSION DEVICE, AND METHOD AND APPARATUS FOR MANUFACTURING THE SAME - A present method of manufacturing a silicon-based thin-film photoelectric conversion device is characterized in that a double pin structure stack body is formed by successively forming, in an identical plasma CVD film deposition chamber, a first p-type semiconductor layer, an i-type amorphous silicon-based photoelectric conversion layer, a first n-type semiconductor layer, a second p-type semiconductor layer, an i-type microcrystalline silicon-based photoelectric conversion layer, and a second n-type semiconductor layer on a transparent conductive film formed on a substrate, and the first p-type semiconductor layer, the i-type amorphous silicon-based photoelectric conversion layer and the first n-type semiconductor layer are formed under such conditions that a film deposition pressure in the plasma CVD film deposition chamber is not lower than 200 Pa and not higher than 3000 Pa and power density per unit electrode area is not lower than 0.01 W/cm06-17-2010
20100147380Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers and Wide Bandgap Dopant Layers - A photovoltaic apparatus includes a p-layer having a bandgap greater than about 2 eV, an n-layer having a bandgap greater than about 2 eV, and an absorber layer between the p-layer and the n-layer, wherein the absorber layer includes SiGe. The ratio of Si to Ge in the absorber layer can be selected to obtain an absorber bandgap between about 1.1 and about 1.4 eV.06-17-2010
20100175755COPPER DELAFOSSITE TRANSPARENT P-TYPE SEMICONDUCTOR THIN FILM DEVICES - Methods for fabrication of copper delafossite materials include a low temperature sol-gel process for synthesizing CuBO07-15-2010
20100200062SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - A solar cell and a method for manufacturing the same is disclosed, wherein the solar cell comprises a first cell comprised of a semiconductor wafer with a PN structure; a second cell comprised of a thin film semiconductor layer with a PIN structure, formed on one surface of the first cell; a first electrode layer formed on one surface of the second cell; and a second electrode layer formed on the other surface of the first cell. Unlike the related art solar cell, the solar cell according to the present invention can absorb the light of long-wavelength range in the first cell, and the light of short-wavelength range in the second cell. As a result, it is possible for the solar cell according to the present invention to absorb the light of all ranges, thereby realizing the high efficiency of 20% or above. Also, the entire process time becomes shortened since there is no requirement for the procedure of forming the silicon thin film for a long period of time.08-12-2010
20100212738SOLAR CELLS - The present invention relates to multicrystalline p-type silicon wafers with high lifetime. The silicon wafers contain 0.2-2.8 ppma boron and 0.06-2.8 ppma phosphorous and/or arsenic and have been subjected to phosphorous diffusion and phosphorous gettering at a temperature of above 925° C. The invention further relates to a method for production of such multicrystalline silicon wafers and to solar cells comprising such silicon wafers.08-26-2010
20100212739SOLAR CELL AND METHOD OF MANUFACTURING THE SAME - A solar cell and a method of manufacturing the same are discussed. The solar cell includes an amorphous silicon layer, and a density of Si—Si bonds in the amorphous silicon layer is 7.48×1008-26-2010
20100229944ENCAPSULATING MATERIAL FOR SOLAR CELL - The present invention provides an encapsulating material for a solar cell, which is easy to prepare a solar cell module, and excellent in processability, insulating property, non-corrosion property, transparency, heat resistance, flexibility and the like, and a solar cell module prepared by using the same. The encapsulating material for a solar cell is one consisting of a cross-linkable resin composition (A) containing an ethylene-(meth)acrylic ester copolymer as a base polymer, an organic peroxide and a crosslinking aid wherein the decomposition temperature (temperature for a half-life period of one hour) of the organic peroxide is equal to or lower than 150° C., and total compounding amount of the organic peroxide and the crosslinking aid, is in a range of from 0.5 to 5 parts by weight per 100 parts by weight of the base polymer, and compounding ratio of the organic peroxide and the crosslinking aid (organic peroxide/crosslinking aid) is in a range of from 1/5 to 1/0.1, in weight ratio.09-16-2010
20100243052Sealed Photovoltaic Modules - A sealed photovoltaic module comprising: a first substrate, a second substrate, at least one photovoltaic element positioned between the first and second substrates, and an edge seal between the first and second substrates positioned at or near an edge of and between the substrates, the edge seal comprising a moisture resistive material.09-30-2010
20100269903PROCESS FOR PRODUCING POLYCRYSTALLINE SILICON SUBSTRATE AND POLYCRYSTALLINE SILICON SUBSTRATE - Provided are: a safe, low-cost method of producing a polycrystalline silicon substrate excellent in photoelectric conversion efficiency by which a uniform, fine uneven structure suited to a solar cell can be simply formed on the surface of the polycrystalline silicon substrate; and a polycrystalline silicon substrate having a uniform, fine, pyramid-shaped uneven structure so that its reflectance can be significantly reduced. The uneven structure is formed on the surface of the polycrystalline silicon substrate by etching the polycrystalline silicon substrate with an alkaline etching solution containing at least one kind selected from the group consisting of a carboxylic acid having 1 or more and 12 or less carbon atoms and each having at least one carboxyl group in one molecule, and salts of the acids.10-28-2010
20100269904Solar Cell Having Doped Semiconductor Heterojunction Contacts - A silicon solar cell has doped amorphous silicon contacts formed on a tunnel silicon oxide layer on a surface of a silicon substrate. High temperature processing is unnecessary in fabricating the solar cell.10-28-2010
20100275995Bifacial solar cells with back surface reflector - A simplified manufacturing process and the resultant bifacial solar cell (BSC) are provided, the simplified manufacturing process reducing manufacturing costs. The BSC includes a back surface contact grid and an overlaid blanket metal reflector. A doped amorphous silicon layer is interposed between the contact grid and the blanket layer.11-04-2010
20100275996SILICON-BASED THIN-FILM PHOTOELECTRIC CONVERSION DEVICE - The invention intends to provide a silicon-based thin-film photoelectric conversion device with conversion efficiency improved at low cost. Specifically, disclosed is a thin-film silicon-based photoelectric conversion device (11-04-2010
20100275997CONDUCTIVE COMPOSITIONS AND PROCESSES FOR USE IN THE MANUFACTURE OF SEMICONDUCTOR DEVICES: MG-CONTAINING ADDITIVE - Described herein are a silicon semiconductor device and a conductive silver paste for use in the front side of a solar cell device.11-04-2010
20100282314PHOTOVOLTAIC CELLS AND METHODS TO ENHANCE LIGHT TRAPPING IN SEMICONDUCTOR LAYER STACKS - A photovoltaic cell includes a substrate, a semiconductor layer stack, a reflective and conductive electrode layer, and a textured template layer. The semiconductor layer stack is disposed above the substrate. The electrode layer is located between the substrate and the semiconductor layer stack. The template layer is between the substrate and the electrode layer. The template layer includes an undulating upper surface that imparts a predetermined shape to the electrode layer. The electrode layer reflects light back into the semiconductor layer stack based on the predetermined shape of the electrode layer.11-11-2010
20100288357HOUSING, ELECTRONIC DEVICE USING THE HOUSING, AND METHOD FOR MAKING THE HOUSING - A housing comprises a transparent exterior coating, a photoelectric conversion coating bonded with the exterior coating and a substrate molded on the photoelectric conversion coating. The photoelectric conversion coating has electrode contacts thereon. The photoelectric conversion coating is used to convert light energy to electrical energy. The disclosure also describes an electronic device using the housing and a method for making the housing there.11-18-2010
20100307583SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - A solar cell comprises an amorphous silicon solar cell unit in which a p-type layer, an i-type layer, and an n-type layer are laminated. The p-type layer includes a high-concentration amorphous silicon carbide layer doped with a p-type dopant and an amorphous silicon buffer layer which is substantially undoped with the p-type dopant. Then, a band gap of the amorphous silicon buffer layer is defined to be 1.65 eV or greater.12-09-2010
20100313952PHOTOVOLTAIC MODULES AND METHODS OF MANUFACTURING PHOTOVOLTAIC MODULES HAVING MULTIPLE SEMICONDUCTOR LAYER STACKS - A monolithically-integrated photovoltaic module is provided. The module includes an electrically insulating substrate, a lower stack of microcrystalline silicon layers above the substrate, a middle stack of amorphous silicon layers above the lower stack, an upper stack of amorphous silicon layers above the middle stack, and a light transmissive cover layer above the upper stack. An energy band gap of each of the lower, middle and upper stacks differs from one another such that a different spectrum of incident light is absorbed by each of the lower, middle and upper stacks.12-16-2010
20100319771METHOD OF MANUFACTURING CRYSTALLINE SILICON SOLAR CELLS USING CO DIFFUSION OF BORON AND PHOSPHORUS - A method of manufacturing a crystalline silicon solar cell, subsequently including: 12-23-2010
20100319772THIN FILM SOLAR CELL WITH LIGHT TRANSMISSION - The present invention relates to a thin film solar cell with light transmission. The thin film solar cell comprises a substrate, a front electrode layer, an absorption layer, a back electrode layer, a light-transmittance enhancing layer and an encapsulation layer, stacked in a sequence. Part of the back electrode layer is removed in depth so as to form a plurality of light-transmittance regions. Part of the light-transmittance enhancing layer and part of the encapsulation layer are disposed within each light-transmittance region. The light-transmittance enhancing layer has a refractive index between that of a first medium overlaid by the part of the light-transmittance enhancing layer disposed within each light-transmittance region and that of a second medium overlaying the part of the light-transmittance enhancing layer disposed within each light-transmittance region.12-23-2010
20100326520THIN FILM SOLAR CELL AND MANUFACTURING METHOD THEREOF - A thin film solar cell including a substrate, a first conductive layer, a first photovoltaic layer, a second conductive layer and a crystallization layer is provided. The first conductive layer is disposed on the substrate. The first photovoltaic layer is disposed on the first conductive layer. The second conductive layer is disposed on the first photovoltaic layer. The crystallization layer is at least partially disposed between the first photovoltaic layer and the first conductive layer or between the first photovoltaic layer and the second conductive layer. A manufacturing method of the thin film solar cell is also provided.12-30-2010
20110000541METHOD FOR DEPOSITION A FILM ONTO A SUBSTRATE - Disclosed is a method for depositing a film onto a substrate, with a sputter deposition process 01-06-2011
20110005594Photovoltaic Devices Including Zinc - A method of manufacturing a photovoltaic cell may include depositing a cadmium sulfide layer on a transparent conductive oxide stack; depositing a zinc-containing layer on the cadmium sulfide layer; and depositing a cadmium telluride layer on the zinc-containing layer.01-13-2011
20110011456PHOTOSENSITIZER AND SOLAR CELL USING THE SAME - A photosensitizer attaining high incident photon-to-current conversion efficiency and having long durability life and a solar cell using the photosensitizer are provided. A solar cell 01-20-2011
20110030782SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - A solar cell includes a semiconductor substrate, a p-type organic semiconductor layer disposed on a first region of a rear surface of the semiconductor substrate, an n-type semiconductor layer disposed on a second region of the rear surface of the semiconductor substrate which is different than the first region, a rear electrode disposed on a rear surface of the p-type organic semiconductor layer, a first grid electrode disposed on a rear surface of the rear electrode, and a second grid electrode disposed on a rear surface of the n-type semiconductor layer.02-10-2011
20110030783PHOTOELECTRIC CONVERSION DEVICE AND MANUFACTURING METHOD THEREOF - To provide a photoelectric conversion device whose characteristics are sufficiently improved. The photoelectric conversion device includes: a first electrode; a unit cell having a semiconductor layer exhibiting a first conductivity type, a semiconductor layer having an effect of photoelectric conversion, and a semiconductor layer exhibiting a second conductivity type; and a second electrode. In the semiconductor layer having an effect of photoelectric conversion, crystal grains each grain diameter of which is smaller than a thickness of the semiconductor layer having an effect of photoelectric conversion are aligned in the thickness direction of the semiconductor layer having an effect of photoelectric conversion from the semiconductor layer exhibiting the first conductivity type to the semiconductor layer exhibiting the second conductivity type.02-10-2011
20110030784METHODS AND MATERIALS FOR CAIGS SILVER-CONTAINING PHOTOVOLTAICS - This invention relates to processes for materials using compounds, polymeric compounds, and compositions for semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to thin film CAIGS, CAIS, and CAGS materials made by a process of providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C. in an inert atmosphere.02-10-2011
20110030785METHODS AND MATERIALS FOR CAIGAS ALUMINUM-CONTAINING PHOTOVOLTAICS - This invention relates to methods for materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to thin film CA(I,G,A)S, CAIGAS, A(I,G,A)S, AIGAS, C(I,G,A)S, and CIGAS materials made by a process of providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.02-10-2011
20110030786METHODS FOR CIS AND CIGS PHOTOVOLTAICS - This invention relates to methods for making materials using a range of compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials for photovoltaic applications including devices and systems for energy conversion and solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. This invention further relates to methods for making a CIGS, CIS or CGS material by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.02-10-2011
20110030787METHODS FOR AIGS SILVER-CONTAINING PHOTOVOLTAICS - This invention relates to methods for making materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making AIGS, AIS or AGS materials by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.02-10-2011
20110030788METHODS FOR CAIGAS ALUMINUM-CONTAINING PHOTOVOLTAICS - This invention relates to methods for making materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making CA(I,G,A)S, CAIGAS, A(I,G,A)S, AIGAS, C(I,G,A)S, and CIGAS materials by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.02-10-2011
20110030789AIR STABLE PHOTOVOLTAIC DEVICE - A method of forming a conducting polymer based photovoltaic device including: (a) providing a transparent first electrode; (b) providing the transparent first electrode with a layer of metal oxide nanoparticles, wherein the metal oxide is selected from the group consisting of: TiO02-10-2011
20110048533SOLAR CELL - A solar cell is discussed. The solar cell includes a substrate, a first electrode on the substrate, a second electrode, and at least one photoelectric transformation unit positioned between the first electrode and the second electrode. The at least one photoelectric transformation unit includes a p-type semiconductor layer, an intrinsic (i-type) semiconductor layer, an n-type semiconductor layer, and a buffer layer positioned between the p-type semiconductor layer and the i-type semiconductor layer. A hydrogen content of the buffer layer is more than a hydrogen content of the i-type semiconductor layer.03-03-2011
20110048534Nanodipole Photovoltaic Devices, Methods of Making and Methods of Use Thereof - A photovoltaic device includes a built-in electric field generated by electric dipoles of nanoparticles embedded in a photoconducting host.03-03-2011
20110056557THIN FILM SOLAR CELL AND METHOD OF MANUFACTURING THE SAME - A thin film solar cell including a first substrate, a first electrode on the first substrate, an upper surface of the first electrode having a plurality of irregularities, an absorption layer on the first electrode, the absorption layer including amorphous silicon layers and microcrystal silicon layers contacting the first electrode at an angle relative to the first substrate, a second electrode on the absorption layer, and a second substrate on the second electrode.03-10-2011
20110056558SOLAR CELL - A solar cell is provided, including a substrate, a first electrode, a second electrode, an n-type semiconductor layer and a p-type semiconductor layer. The first electrode is disposed on the substrate. The second electrode is disposed between the first electrode and the substrate. The n-type semiconductor layer is disposed between the first electrode and the second electrode. The material of the n-type semiconductor layer is microcrystalline silicon (μc-Si) or polysilicon. The p-type semiconductor layer is disposed between the first electrode and the n-type semiconductor layer.03-10-2011
20110061732SOLAR CELL - A solar cell is shown. The solar cell includes a semiconductor substrate of a first conductive type; a first amorphous semiconductor layer including a crystalline portion; a first electrode portion on the semiconductor substrate; and a second electrode portion on the semiconductor substrate.03-17-2011
20110061733Additives to Silane for Thin Film Silicon Photovoltaic Devices - The objective of this invention is to use chemical additives to increase the rate of deposition processes for the amorphous silicon film (αSi:H) and/or the microcrystalline silicon film (μCSi:H), and improve the electrical current generating capability of the deposited films for photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.03-17-2011
20110067756THIN FILM SOLAR CELL - A thin film solar cell includes; a first electrode, a first active layer disposed on the first electrode, a porous intermediate layer disposed on the first active layer, a second active layer disposed on the intermediate layer and a second electrode disposed on the second active layer.03-24-2011
20110067757COPPER INDIUM GALLIUM SELENIDE (CIGS) THIN FILMS WITH COMPOSITION CONTROLLED BY CO-SPUTTERING - A method and apparatus for forming a thin film of a copper indium gallium selenide (CIGS)-type material are disclosed. The method includes providing first and second targets in a common sputtering chamber. The first target includes a source of CIGS material, such as an approximately stoichiometric polycrystalline CIGS material, and the second target includes a chalcogen, such as selenium, sulfur, tellurium, or a combination of these elements. The second target provides an excess of chalcogen in the chamber. This can compensate, at least in part, for the loss of chalcogen from the CIGS-source in the first target, resulting in a thin film with a controlled stoichiometry which provides effective light absorption when used in a solar cell.03-24-2011
20110088779METHOD FOR MANUFACTURING THIN-FILM SOLAR CELL AND THIN-FILM SOLAR CELL - A method for manufacturing a thin-film solar cell including the follow processes is provided. First, a substrate is provided. Then, a first conductive layer is formed on the substrate. Afterward, a first photovoltaic layer is formed on the first conductive layer. Then, the first photovoltaic layer is processed by a stabilized process, so as to reduce the light induced degradation as the first photovoltaic layer is illuminated. The material of the first photovoltaic layer is an amorphous semiconductor material. Later, a second photovoltaic layer is formed on the first photovoltaic layer. Then, a second conductive layer is formed on the second photovoltaic layer. A thin-film solar cell is also provided.04-21-2011
20110108108FLASH LIGHT ANNEALING FOR THIN FILMS - A method of making a crystalline film includes providing a film comprising seed grains of a selected crystallographic surface orientation on a substrate; irradiating the film using a pulsed light source to provide pulsed melting of the film under conditions that provide a mixed liquid/solid phase and allowing the mixed solid/liquid phase to solidify under conditions that provide a textured polycrystalline layer having the selected surface orientation. One or more irradiation treatments may be used. The film is suitable for use in solar cells.05-12-2011
20110108109METHOD FOR LARGE-SCALE MANUFACTURING OF PHOTOVOLTAIC CELLS FOR A CONVERTER PANEL AND PHOTOVOLTAIC CONVERTER PANEL - So as to improve large-scale industrial manufacturing of photovoltaic cells and of the respective converter panels at a photovoltaic cell with a microcrystalline layer of intrinsic silicon compound at least one of the adjacent layers of doped silicon material is conceived as a an amorphous layer.05-12-2011
20110114177MIXED SILICON PHASE FILM FOR HIGH EFFICIENCY THIN FILM SILICON SOLAR CELLS - A method and apparatus for forming solar cells is provided. In one embodiment, a photovoltaic device includes a first p-i-n junction cell formed on a substrate, wherein the p-i-n junction cell comprises a p-type silicon containing layer, an intrinsic type silicon containing layer formed over the p-type silicon containing layer, and a n-type silicon containing layer formed over the intrinsic type silicon containing layer, wherein the intrinsic type silicon containing layer comprises a first pair of microcrystalline layer and amorphous silicon layer.05-19-2011
20110114178SOLAR CELL MODULE - Disclosed herein is a solar cell module, which includes a photovoltaic member, a back transparent substrate and an ink layer. The photovoltaic member is capable of converting light into electricity. The ink layer is disposed between the photovoltaic member and the transparent back substrate, and can be observed through the back transparent substrate. The ink layer may exhibit a colorful picture or pattern.05-19-2011
20110132456SOLAR CELL INTEGRATING MONOCRYSTALLINE SILICON AND SILICON-GERMANIUM FILM - The present invention discloses a solar cell integrating monocrystalline silicon and a SiGe film, which comprises an N-type amorphous silicon-germanium (SiGe) film formed on a P-type monocrystalline silicon substrate. The P-type monocrystalline silicon substrate has a roughened surface to capture sunlight. A transparent conductive layer is stacked on the N-type amorphous SiGe film. Metal electrodes are formed on the transparent conductive layer and penetrate the transparent conductive layer to contact the N-type amorphous SiGe film. A P-type polycrystalline SiGe film is formed on the backside of the P-type monocrystalline silicon substrate. A back surface field is arranged below the P-type polycrystalline SiGe film to prevent from the recombination of major carriers. A backside metal electrode layer is arranged below the back surface field to function as a backside electrode and decrease the contact resistance. Thereby, the present invention can effectively promote the absorption rate of solar energy.06-09-2011
20110146788PHOTOVOLTAIC CELL - A photovoltaic (PV) cell is disclosed. The PV cell comprises, a plurality of ultrafine structures electrically coupled to, and embedded within, a polycrystalline photo-active absorber layer comprising a p-type compound semiconductor.06-23-2011
20110146789MOLECULAR PRECURSOR METHODS AND MATERIALS FOR OPTOELECTRONICS - This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds, precursor materials and methods for preparing photovoltaic layers and thin films thereof.06-23-2011
20110146790MOLECULAR PRECURSOR METHODS FOR OPTOELECTRONICS - This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds, precursor materials and methods for preparing photovoltaic layers.06-23-2011
20110146791EPITAXIAL GROWTH OF SILICON FOR LAYER TRANSFER - Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.06-23-2011
20110168256Photonic Device And Method Of Making Same Using Nanowires - A photonic device, a method of making the device and a nano-scale antireflector employ a bramble of nanowires. The photonic device and the method include a first layer of a microcrystalline material provided on a substrate surface and a second layer of a microcrystalline material provided on the substrate surface horizontally spaced from the first layer by a gap. The photonic device and the method further include, and the nano-scale antireflector includes, the bramble of nanowires formed between the first layer and the second layer. The nanowires have first ends integral to crystallites in each of the first layer and the second layer. The nanowires of the bramble extend into the gap from each of the first layer and the second layer.07-14-2011
20110168257Solar Cell Structure - Utilization of the near percolation plasmonic nanostructures near the photoconversion layer in photovoltaic device provide significant enhancement in the efficiency. Photovoltaic devices utilizing efficiency enhancement due to utilization of near percolation plasmonic nanostructures and methods of photovoltaic device fabrication provide an improved solar cells that can be used for power generation and other applications.07-14-2011
20110168258LAYER SYSTEM FOR SOLAR CELLS - The present invention relates to a layer system (07-14-2011
20110168259THIN FILM SOLAR CELL AND MANUFACTURING METHOD THEREOF - A thin film solar cell is employed having a power generation layer formed with a microcrystalline silicon film including, in its plane, a first region and a second region in which a percentage of crystallization is lower than the first region and a carrier lifetime is higher than the first region.07-14-2011
20110174374HETEROJUNCTION SOLAR CELL WITH ABSORBER HAVING AN INTEGRATED DOPING PROFILE - The invention relates to a heterojunction solar cell and a method for the production thereof. The heterojunction solar cell has an absorber layer made of silicon with a basic doping and at least one heterojunction layer of a doped semiconductor material whose band gap differs from that of the silicon of the absorber layer. The absorber layer has a doped layer at an interface directed toward the heterojunction layer, the doping concentration of said doped layer being greater than the basic doping concentration of the absorber layer. As a result of this doping profile, a field effect can be caused which prevents charge carrier pairs produced within the absorber layer from diffusing toward the interface between the absorber layer and the heterojunction layer and from recombining there.07-21-2011
20110180142ELECTRICAL AND OPTICAL PROPERTIES OF SILICON SOLAR CELLS - The method for manufacturing a photovoltaic cell or a photovoltaic converter panel comprises depositing a layer of p-doped amorphous silicon using a gas mixture comprising silane, methane, hydrogen and trimethylboron in a ratio of 1:2:2:1.25. In particular, plasma-enhanced chemical vapor deposition is used for the deposition. The corresponding photovoltaic cells and photovoltaic converter panels are also described.07-28-2011
20110186127METHOD FOR DEPOSITING AN AMORPHOUS SILICON FILM FOR PHOTOVOLTAIC DEVICES WITH REDUCED LIGHT-INDUCED DEGRADATION FOR IMPROVED STABILIZED PERFORMANCE - A thin film photovoltaic device on a substrate is being realized by a method for manufacturing a p-i-n junction semiconductor layer stack with a p-type microcrystalline silicon layer, a p-type amorphous silicon layer, a buffer silicon layer comprising preferably intrinsic amorphous silicon, an intrinsic type amorphous silicon layer, and an n-type silicon layer over the intrinsic type amorphous silicon layer.08-04-2011
20110192461Zone Melt Recrystallization of layers of polycrystalline silicon - A solar cell comprises a recrystallized active layer wherein the active layer has preferred characteristics.08-11-2011
20110203660Transparent Solar Cell Method of Fabrication via Float Glass Process - The present invention provides improved devices such as transparent solar cells. This patent teaches a particularly efficient method of device manufacture based on incorporating the solar cell fabrication into the widely used, high temperature, Float Glass manufacture process.08-25-2011
20110203661OPTICALLY PUMPED SEMICONDUCTOR AND DEVICE USING THE SAME - The optically pumped semiconductor according to the present invention is an optically pumped semiconductor that is a semiconductor of a perovskite oxide. The optically pumped semiconductor has a composition represented by a general formula: BaZr08-25-2011
20110209757Nano Polycrystalline Bio Thin Film Photovoltaic Cell and Preparation Method thereof - This invention relates to a photovoltaic cell and its preparation method. The nano polycrystalline bio thin film photovoltaic cell as provided by the present invention is of layered structure, and the structure from top to bottom is: a top plate insulated and sealed layer, a conductive layer, a nano semiconductor layer, chromophoric molecular layer, an electrolyte polymer layer, a conductive catalyst layer, a conductive layer, a bottom plate insulated and sealed layer. The nano semiconductor layer is made of three metal oxide or metal sulfide, and the electrolyte polymer layer is made of CeCl09-01-2011
20110214736PHOTODIODE, IMAGE SENSOR AND SOLAR CELL - A photodiode includes a p-type semiconductor material and an n-type chalcogenide compound. The p-type semiconductor material and the n-type chalcogenide compound form a pn-junction.09-08-2011
20110220200Organic Photoactive Device - This disclosure provides organic photoactive devices, including organic light emitting diodes and organic solar cells. The devices have a first electrode, a second electrode, and a stack of organic layer between the first and second electrodes. The stack of organic layers has a first transport layer, a second transport layer, an interface mediating layer, and a photoactive layer.09-15-2011
20110220201LOW-COST MULTI-JUNCTION SOLAR CELLS AND METHODS FOR THEIR PRODUCTION - Solar cells fabricated without gasification of metallurgical-grade silicon. The substrates are prepared by: melting metallurgical grade silicon in a furnace; solidifying the melted metallurgical grade silicon into an ingot; slicing the ingot to obtain a plurality of wafers; polishing and cleaning each wafer; depositing aluminum layer on backside of each wafer; depositing a layer of hydrogenated silicon nitride on front surface of each wafer; annealing the wafers at elevated temperature; removing the hydrogenated silicon nitride; and, removing the aluminum layer. The front surface may be textured prior to forming the solar cell. The solar cell structure comprises a metallurgical grade doped silicon substrate and a thin-film structure formed over the substrate to form a p-i-n junction with the substrate. The substrate may be doped p-type, and the thin film structure may be an intrinsic amorphous layer formed over the substrate and an n-type amorphous layer formed over the intrinsic layer.09-15-2011
20110226330AMORPHOUS SILICON SOLAR CELLS - The present invention provides novel strategies for mitigating the Staebler-Wronski Effect (SWE), that is, the light induced degradation in performance of photoconductivity in amorphous silicon. Materials according to the present invention include alloys or composites of amorphous silicon which affect the elasticity of the materials, amorphous silicon that has been grown on a flexed substrate, compression sandwiched comprising amorphous silicon, and amorphous silicon containing nanoscale features that allow stress to be relieved. The composites are formed with nanoparticles such as nanocrystals and nanotubes. Preferred are boron nitride nanotubes (BNNT) including those that have been surface modified.09-22-2011
20110232753METHODS OF FORMING A THIN-FILM SOLAR ENERGY DEVICE - A method and apparatus for making solar cell active layers is provided. A doped microcrystalline semiconductor layer is formed with a bandgap-enhancing alloy material at low hydrogen flow rates. Deposition conditions are established at a low flowrate of the semiconductor source and ramped to a high flowrate as a first sublayer is deposited. The bandgap-enhancing alloy material is added to the reaction mixture to deposit a second sublayer. The bandgap-enhancing alloy material may optionally be stopped to deposit a third sublayer.09-29-2011
20110232754PHOTOVOLTAIC DEVICE INCLUDING FLEXIBLE OR INFLEXIBLE SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME - Disclosed is a photovoltaic device. The photovoltaic device according to the present invention includes: a first electrode; a second electrode; and a p-type window layer, a buffer layer, a light absorbing layer and an n-type layer, which are sequentially stacked between the first electrode and the second electrode, wherein, when the p-type window layer is composed of hydrogenated amorphous silicon oxide, the buffer layer is composed of either hydrogenated amorphous silicon carbide or hydrogenated amorphous silicon oxide, and wherein, when the p-type window layer is composed of hydrogenated amorphous silicon carbide, the buffer layer is composed of hydrogenated amorphous silicon oxide.09-29-2011
20110240121Nanocrystalline Superlattice Solar Cell - A nanocrystalline superlattice solar cell utilizing a superlattice constructed from alternating amorphous and nanocrystalline layers is provided. The amorphous layers of the superlattice include Germanium. In one embodiment the Germanium content is homogeneous across the amorphous layer. Alternatively, the Germanium content is graded across the amorphous layer from a lower content to a greater content as the amorphous layer is grown. The grading of Germanium content can vary from 0% or greater at a boundary with the preceding layer to 100% or less at a boundary with a subsequent layer. The grading may be continuous or may occur in discreet step increases in Germanium content.10-06-2011
20110277838Photovoltaic Devices Employing Ternary Compound Nanoparticles - The present invention provides a photovoltaic device. In an exemplary embodiment, the photovoltaic device includes a substrate having a thin film disposed thereon, where the thin film includes alloyed ternary nanocrystals. The present invention provides also provides a method of making ternary compound nanocrystals. In an exemplary embodiment, the method includes (1) degassing a solution of PbO, oleic acid and 1-octadecene (ODE) in a container, (2) heating the solution in the container, (3) injecting a first mixture of trioctylphosphine (TOP):Se solution, TMS2S, diphenylphosphine (DPP) and ODE into the heated solution, thereby forming a second mixture in the container, (4) adding ODE to the second mixture in the container, (5) growing the nanocrystals in the second mixture in a reaction in the container, and (6)_quenching the reaction, thereby resulting in precipitated nanocrystals in the container. In a further embodiment, the present invention further includes purifying the precipitated nanocrystals.11-17-2011
20110284074PHOTOVOLTAIC CELL - A photovoltaic cell includes a first type doped mono-crystalline silicon substrate, an intrinsic amorphous silicon layer, a second type doped amorphous silicon layer, a first type doped crystalline Ge-containing layer, and a pair of electrodes. The first type doped mono-crystalline silicon substrate has a front surface and a rear surface. The intrinsic amorphous silicon layer is disposed on the front surface. The second type doped amorphous silicon layer is disposed on the intrinsic amorphous silicon layer. The first type doped crystalline Ge-containing layer is disposed on the rear surface. The pair of electrodes are electrically connected to the second type doped amorphous silicon layer and first type doped crystalline Ge-containing layer, respectively.11-24-2011
20110297227HETERO SOLAR CELL AND METHOD FOR PRODUCING HETERO SOLAR CELLS - The invention relates to a hetero solar cell which comprises silicon, doped silicon layers and tunnel passivation layers. This is concluded by an indium-tin oxide layer on the front-side and by an aluminium layer on the rear-side. Furthermore, the invention relates to a method for producing hetero solar cells.12-08-2011
20110303283SOLAR CELL STRUCTURE OF GROUP III-V SEMICONDUCTOR AND METHOD OF MANUFACTURING THE SAME - A solar cell structure of Group III-V semiconductor and method of manufacturing the same, comprising: a transparent substrate, an amorphous silicon layer, and at least a Group III-V polycrystalline semiconductor layer. Wherein, said amorphous silicon layer is formed on said transparent substrate through Plasma Enhanced Chemical Vapor Deposition (PECVD), and said Group III-V polycrystalline semiconductor layer is formed on said amorphous silicon layer sequentially by means of Metal-Organic Chemical Vapor Deposition (MOCVD). In said solar cell structure mentioned above, said transparent substrate replaces a conventional Group III-V substrate, hereby reducing its cost significantly, increasing surface area of said solar cell structure, hence increasing its light absorption area, and raising its photoelectric conversion efficiency.12-15-2011
20110308606SOLAR CELL OF IMPROVED PHOTO-UTILIZATION EFFICIENCY - The present invention relates to a solar cell having a structure of improved photo-utilization efficiency. The solar cell comprises a transparent texture layer, a transparent conductive layer, a photoelectric conversion layer and a back electrode layer and a substrate under the back electrode layer stacked in a sequence from an incident light side. A laser scribing of module process is performed in the transparent conductive layer, the photoelectric conversion layer and the back electrode layer so as to form a laser scribing region and a photoelectric conversion active region where the transparent texture layer is formed of an angular or arc surface shape and has a concave portion opposite to the laser scribing region. The laser scribing region is provided to guide the incident light to concentrate on the photoelectric conversion active region.12-22-2011
20110308607GROUP III-V SOLAR CELL AND METHOD OF MANUFACTURING THE SAME - A Group III-V solar cell and a manufacturing method thereof, wherein, three amorphous silicon layers are formed on a substrate, which includes a first type amorphous silicon layer, an intrinsic amorphous silicon layer, and a second type amorphous silicon layer. The lattice characteristics of amorphous silicon layer are utilized, and a Group III-V polycrystalline semiconductor layer is formed on said amorphous silicon layer, such that amorphous silicon and Group III-V material are able to perform photoelectric conversion simultaneously in raising photoelectric conversion efficiency of said Group III-V solar cell effectively by means of a direct energy gap of said Group III-V material.12-22-2011
20110308608SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - A solar includes a substrate of a first conductive type, an emitter region of a second conductive type opposite to the first conductive type and forming a p-n junction with the substrate, a first anti-reflection layer positioned on the emitter region, a first electrode connected to the emitter region, a second anti-reflection layer positioned on the first anti-reflection layer and the first electrode, and a second electrode connected to the substrate.12-22-2011
20110315220PHOTOVOLTAIC CELL AND METHODS FOR FORMING A BACK CONTACT FOR A PHOTOVOLTAIC CELL - Methods are provided for forming a back contact for a photovoltaic cell that includes at least one semiconductor layer. One method includes depositing at least one back contact material on a metal contact. The back contact material comprises a metal nitride or a metal phosphide. The method further includes depositing an absorber layer comprising cadmium and tellurium above the back contact material and thermally processing the back contact material, such that the back contact material interacts with the absorber layer to form an interlayer that lowers a contact resistance for the photovoltaic cell. A photovoltaic cell is also provided and includes comprising a metal contact, at least one back contact material disposed on the metal contact, and an absorber layer comprising a material comprising cadmium and tellurium disposed above the back contact material. An interlayer is disposed between the back contact material and the absorber layer and comprises a compositionally graded layer of the back contact material and the absorber layer material. The photovoltaic cell further includes a window layer disposed above the absorber layer.12-29-2011
20110315221METHODS FOR MAKING THIN FILM POLYCRYSTALLINE PHOTOVOLTAIC DEVICES USING ADDITIONAL CHEMICAL ELEMENT AND PRODUCTS THEREOF - Method for making a photovoltaic device and structure thereof. The method includes providing a substrate including a glass layer, a first conductive layer on the glass layer, and a cadmium sulfide layer on the first conductive layer. Additionally, the method includes depositing one or more first materials on the cadmium sulfide layer. The one or more first materials include a first quantity of chemical element cadmium and a second quantity of chemical element tellurium. Moreover, the method includes performing a first thermal treatment to at least the first quantity of chemical element cadmium, the second quantity of chemical element tellurium, and a third quantity of chemical element chlorine, so that a polycrystalline layer composed of at least cadmium telluride is formed on the cadmium sulfide layer. Also, the method includes depositing one or more second materials on a surface of the polycrystalline layer.12-29-2011
20120000528METHOD OF FABRICATING A SOLAR CELL WITH A TUNNEL DIELECTRIC LAYER - Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.01-05-2012
20120037227METHOD OF MANUFACTURING SOLAR CELL AND SOLAR CELL - A method for manufacturing a solar cell (02-16-2012
20120073649HIGH VOLUME METHOD OF MAKING LOW-COST, LIGHTWEIGHT SOLAR MATERIALS - A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se03-29-2012
20120073650METHOD OF FABRICATING AN EMITTER REGION OF A SOLAR CELL - Methods of fabricating emitter regions of solar cells are described. Methods of forming layers on substrates of solar cells, and the resulting solar cells, are also described.03-29-2012
20120073651PHOTOELECTRIC CONVERSION ELEMENT - A photoelectric conversion element according to an embodiments includes: a first metal layer; a semiconductor layer formed on the first metal layer; a second metal layer formed on the semiconductor layer, the second metal layer comprising a porous thin film with a plurality of openings each having a mean area not smaller than 80 nm03-29-2012
20120073652TRANSPARENT COMPOSITE STRUCTURE INTEGRATING A PHOTOVOLTAIC CELL - The invention relates to 03-29-2012
20120097246SOLAR CELL AND METHOD OF MAKING THE SAME - A solar cell includes a crystalline semiconductor substrate; a first crystalline semiconductor layer; an amorphous semiconductor layer; a first metal electrode layer and a second metal electrode layer. The crystalline semiconductor substrate has a first surface and a second surface, and the crystalline semiconductor substrate has a first doped type. The first crystalline semiconductor layer is disposed on the first surface of the crystalline semiconductor substrate, where the first crystalline semiconductor layer has a second doped type contrary to the first doped type. The amorphous semiconductor layer is disposed on the first crystalline semiconductor layer, and the amorphous semiconductor layer has the second doped type. The first metal electrode layer is disposed on the amorphous semiconductor layer. The second metal electrode layer is disposed on the second surface of the crystalline semiconductor substrate.04-26-2012
20120103417SOLAR CELL WITH GRADED BANDGAP - A solar cell with graded bandgap is provided to increase the efficiencies of using the solar energy by a solar cell. The solar cell with graded bandgap above sequentially comprises a transparent conductive layer, a polysilicon layer, and conductive layer on a substrate. The polysilicon layer has a gradually increased bandgap from a first interface contacting the transparent conductive layer to the second interface contacting the conductive layer.05-03-2012
20120145239PHOTOELECTRIC CONVERTER AND METHOD FOR PRODUCING SAME - A photoelectric conversion device is provided wherein variance of photoelectric conversion efficiency within a panel plane is reduced. A method of manufacturing a photoelectric conversion device having a microcrystalline silicon photoelectric conversion unit (06-14-2012
20120145240BARRIER FILMS FOR THIN-FILM PHOTOVOLTAIC CELLS - A multilayer article having a cell substrate; a thin-film photovoltaic cell disposed on the cell substrate; an encapsulant layer disposed on the photovoltaic cell; and at least one plastic substrate coated on at least one side with one or more transparent, amorphous barrier layers disposed on the encapsulant layer. The invention extends to the process of making the article.06-14-2012
20120167984Photovoltaic Device Structure with Primer Layer - Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process. The product materials exhibit high carrier mobility, high photovoltaic conversion efficiency, low porosity, little or no Staebler-Wronski degradation, and low concentrations of electronic and chemical defects.07-05-2012
20120199193AMORPHOUS SILICON SOLAR CELL MODULE - Provided is an amorphous silicon solar cell module including a solar cell encapsulant containing a metal deactivator and silane-modified polyethylene, and a metal material adjacent to the solar cell encapsulant and having at least one selected from copper, a lead-free solder alloy and a silver film.08-09-2012
20120211079SILICON PHOTOVOLTAIC ELEMENT AND FABRICATION METHOD - A method of forming a photovoltaic device that includes providing an absorption layer of a first crystalline semiconductor material having a first conductivity type, and epitaxially growing a second crystalline semiconductor layer of a second conductivity type that is opposite the first conductivity type. The first conductivity type may be p-type and the second conductivity type may be n-type, or the first conductivity type may be n-type and the second conductivity type may be p-type. The temperature of the epitaxially growing the second crystalline semiconductor layer does not exceed 500° C. Contacts are formed in electrical communication with the absorption layer and the second crystalline semiconductor layer.08-23-2012
20120216862Silicon: Hydrogen Photovoltaic Devices, Such As Solar Cells, Having Reduced Light Induced Degradation And Method Of Making Such Devices - A method of producing a photovoltaic device includes providing a stretchable substrate for the photovoltaic device; and stretching the substrate to produce a stretched substrate. The method further includes depositing a structure comprising hydrogenated amorphous silicon onto the stretched substrate; and subjecting the deposited hydrogenated amorphous silicon structure and the stretched substrate to a compressive force to form a compressively strained photovoltaic device.08-30-2012
20120227808PROCESS FOR PRODUCTION OF SILICON POWDER, MULTI-CRYSTAL-TYPE SOLAR CELL PANEL, AND PROCESS FOR PRODUCTION OF THE SOLAR CELL PANEL - Disclosed is a process for producing a silicon powder, which comprises the steps of: powderizing a silicon ingot having a grade of 99.999% or more into a crude silicon powder having a particle diameter of 3 mm or less by means of high-pressure purified-water cutting; and reducing the crude silicon powder into a silicon powder having a particle diameter ranging from 0.01 to 10 [mu]m inclusive by means of at least one method selected from jet milling, wet granulation, ultrasonic wave disruption and shock wave disruption. The process is a technique for producing a silicon powder rapidly from a silicon ingot without reducing purity.09-13-2012
20120285532TRANSPARENT COLOR SOLAR CELLS - Provided is a transparent color solar cell, which includes a substrate, a first electrode layer disposed on the substrate, a transparent material layer including quantum dots having the same particle size, which absorb visible light provided from the sun through the first electrode layer and having a first wavelength region, and which selectively transmit visible light provided from the sun through the first electrode layer and having a second wavelength region, and a second electrode layer disposed on the transparent material layer.11-15-2012
20120298199SOLAR CELL AND MANUFACTURING METHOD THEREOF - A solar cell includes a cathode component, an anode component, sealant for assembling the cathode component and the anode component to form a closed space, and electrolyte accommodated in the closed space, in which the cathode component contains a lower transparent conductive substrate, a nano-oxide semiconductor thin film formed on the lower transparent conductive substrate, and dye attached to a nano-particle surface of the nano-oxide semiconductor thin film; and the anode component contains an upper transparent conductive substrate, and an anode electrode layer formed on the upper transparent conductive substrate, the nano-oxide semiconductor thin film and the anode electrode layer being arranged opposite to each other and contacting with the electrolyte, in which the anode component further contains a CdTe layer which is patterned to have an opening, and the anode electrode layer is located in the opening of the CdTe layer.11-29-2012
20120298200PHOTOVOLTAIC CELL - An organic photovoltaic cell (11-29-2012
20130019944METHOD OF STABILIZING HYDROGENATED AMORPHOUS SILICON AND AMORPHOUS HYDROGENATED SILICON ALLOYS - A method of forming a semiconductor material of a photovoltaic device that includes providing a surface of a hydrogenated amorphous silicon containing material, and annealing the hydrogenated amorphous silicon containing material in a deuterium containing atmosphere. Deuterium from the deuterium-containing atmosphere is introduced to the lattice of the hydrogenated amorphous silicon containing material through the surface of the hydrogenated amorphous silicon containing material. In some embodiments, the deuterium that is introduced to the lattice of the hydrogenated amorphous silicon containing material increases the stability of the hydrogenated amorphous silicon containing material.01-24-2013
20130019945METHOD OF STABILIZING HYDROGENATED AMORPHOUS SILICON AND AMORPHOUS HYDROGENATED SILICON ALLOYS - A method of forming a semiconductor material of a photovoltaic device that includes providing a surface of a hydrogenated amorphous silicon containing material, and annealing the hydrogenated amorphous silicon containing material in a deuterium containing atmosphere. Deuterium from the deuterium-containing atmosphere is introduced to the lattice of the hydrogenated amorphous silicon containing material through the surface of the hydrogenated amorphous silicon containing material. In some embodiments, the deuterium that is introduced to the lattice of the hydrogenated amorphous silicon containing material increases the stability of the hydrogenated amorphous silicon containing material.01-24-2013
20130037105FUSION FORMABLE ALKALI-FREE INTERMEDIATE THERMAL EXPANSION COEFFICIENT GLASS - A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points ≧600° C., thermal expansion coefficient of from 35 to 50×1002-14-2013
20130037106PRECURSORS AND USES FOR CIS AND CIGS PHOTOVOLTAICS - Processes for making a photovoltaic layer on a substrate by depositing a first layer of an ink onto the substrate, wherein the ink contains one or more compounds having the formula M02-14-2013
20130061923PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR MANUFACTURING THE SAME - To provide a photoelectric conversion device having high conversion efficiency and a method for manufacturing the same. The photoelectric conversion device includes a working electrode that has a transparent electrode (03-14-2013
20130068301METHOD OF ETCHING A SEMICONDUCTOR LAYER OF A PHOTOVOLTAIC DEVICE - A method and apparatus provide for a roughened back surface of a semiconductor absorber layer of a photovoltaic device to improve adhesion. The roughened back surface may be achieved through an etching process.03-21-2013
20130081694POLYCRYSTALLINE-TYPE SOLAR CELL PANEL AND PROCESS FOR PRODUCTION THEREOF - Disclosed is a polycrystalline-type silicon solar cell which can be produced at low cost by forming a polycrystalline silicon film having a PN junction in a simple manner. Specifically, an amorphous silicon film produced by sputtering using a dopant-containing silicon target is polycrystallized with plasma, and a PN junction is formed in the amorphous silicon film, thereby producing a polycrystalline silicon film having a PN junction. The polycrystalline silicon film having a PN junction is used as a silicon substrate for a polycrystalline-type silicon solar cell. Also disclosed is a technique for producing a dopant-containing silicon target from a silicon ingot.04-04-2013
20130087194SILICON MULTILAYER ANTI-REFLECTIVE FILM WITH GRADUALLY VARYING REFRACTIVE INDEX AND MANUFACTURING METHOD THEREFOR, AND SOLAR CELL HAVING SAME AND MANUFACTURING METHOD THEREFOR - The present invention relates to a silicon multilayer anti-reflective film with a gradually varying refractive index and a manufacturing method therefor, and a solar cell having the same and a manufacturing method therefor, wherein: the refractive index of a silicon thin film is adjusted by depositing silicon on a semiconductor or glass substrate with a slight tilt; and an anti-reflective film with a gradually varying refractive index is implemented using a silicon multi-layer film in which multi-layer film are stacked with different tilt angles. In addition, the silicon multilayer anti-reflective film according to the present invention is applied to a silicon solar cell, thereby suppressing reflection in the inside of the solar cell and providing an excellent heat radiation characteristic using a high heat transfer coefficient.04-11-2013
20130098444POLYCRYSTALLINE SILICON THIN-FILM FORMING METHOD, POLYCRYSTALLINE SILICON THIN-FILM SUBSTRATE, SILICON THIN-FILM SOLAR CELL, AND SILICON THIN-FILM TRANSISTOR DEVICE - A polycrystalline silicon thin-film forming method includes: preparing a substrate; forming a precursor of a first silicon thin film including a first polycrystalline silicon phase and a non-crystalline silicon phase; exposing the first polycrystalline silicon phase; and growing, above the first silicon thin film which the first polycrystalline silicon phase is exposed, a second polycrystalline silicon phase using the first polycrystalline silicon phase as a seed crystal by a plasma chemical vapor deposition method, wherein the first polycrystalline silicon phase is formed continuously in any direction perpendicular to a thickness direction of the first silicon thin film.04-25-2013
20130112264METHODS FOR FORMING A DOPED AMORPHOUS SILICON OXIDE LAYER FOR SOLAR CELL DEVICES - Embodiments of the present invention relate to methods for forming a doped amorphous silicon oxide layer utilized in thin film solar cells. In one embodiment, a method for forming a doped p-type amorphous silicon containing layer on a substrate includes providing a substrate in a processing chamber, supplying a gas mixture having a hydrogen-based gas, a silicon-based gas and a carbon and oxygen containing gas into the processing chamber, the gas mixture having a volumetric flow ratio of the hydrogen-based gas to the silicon-based gas between about 5 and about 15, wherein a volumetric flow ratio of the carbon and oxygen containing gas to the total combined flow of hydrogen-based gas and the silicon-based gas is between about 10 percent and about 50 percent; and maintaining a process pressure of the gas mixture within the processing chamber at between about 1 Torr and about 10 Torr while forming a doped p-type amorphous silicon containing layer.05-09-2013
20130112265HETEROJUNCTION SOLAR CELL BASED ON EPITAXIAL CRYSTALLINE-SILICON THIN FILM ON METALLURGICAL SILICON SUBSTRATE DESIGN - One embodiment of the present invention provides a heterojunction solar cell. The solar cell includes a metallurgical-grade Si (MG-Si) substrate, a layer of heavily doped crystalline-Si situated above the MG-Si substrate, a layer of lightly doped crystalline-Si situated above the heavily doped crystalline-Si layer, a backside ohmic-contact layer situated on the backside of the MG-Si substrate, a passivation layer situated above the heavily doped crystalline-Si layer, a layer of heavily doped amorphous Si (a-Si) situated above the passivation layer, a layer of transparent-conducting-oxide (TCO) situated above the heavily doped a-Si layer, and a front ohmic-contact electrode situated above the TCO layer.05-09-2013
20130112266PHOTOELECTRIC CONVERSION DEVICE AND SOLAR CELL HAVING THE SAME - The photoelectric conversion device of the present invention is a photoelectric conversion device which includes a substrate on which the following are layered in the order listed below: a lower electrode layer; a photoelectric conversion semiconductor layer which includes, as a major component, at least one kind of compound semiconductor having a chalcopyrite structure formed of a group Ib element, a group IIIb element, and a group VIb element; a buffer layer; and a transparent conductive layer, in which the buffer layer includes a ternary compound of a cadmium-free metal, oxygen, and sulfur, and a has a carbonyl ion on a surface facing the transparent conductive layer.05-09-2013
20130125982PHOTOELECTRIC CONVERSION DEVICE - It is aimed to provide a photoelectric conversion device having high adhesion between a light-absorbing layer and an electrode layer as well as high photoelectric conversion efficiency. A photoelectric conversion device comprises a light-absorbing layer including a chalcopyrite-based compound semiconductor and oxygen. The light-absorbing layer includes voids therein. An atomic concentration of oxygen in the vicinity of the voids is higher than an average atomic concentration of oxygen in the light-absorbing layer.05-23-2013
20130139884SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - A method for manufacturing a solar cell according to an embodiment of the present invention includes preparing a semiconductor substrate having a first conductive type dopant; ion-implanting a pre-amorphization elements into a front surface of the semiconductor substrate to form an amorphous layer; and forming an emitter layer by ion-implanting second conductive type dopant into the front surface of the semiconductor substrate. The method then further includes heat-treating the layers to activate the second conductive type dopant. The method further includes forming a back surface field layer at a back surface of the semiconductor substrate by ion-implanting a first conductive type dopant.06-06-2013
20130153028THIN-FILM TRANSISTOR, METHOD FOR FABRICATING THIN-FILM TRANSISTOR, AND DISPLAY DEVICE - A thin-film transistor according to the present disclosure is capable of balancing excellent on-characteristics and excellent off-characteristics, and in which the electrical characteristics are symmetric even when the source electrode and the drain electrode are switched. The thin-film transistor includes: a substrate; a gate electrode; a gate insulating layer; a crystalline silicon layer above the gate insulating layer above the gate electrode; a non-crystalline silicon layer above the gate insulating layer and on both sides of the crystalline silicon layer, having a thickness smaller than a thickness of the crystalline silicon layer; a channel protective layer above the crystalline silicon layer; and a source electrode and a drain electrode.06-20-2013
20130160849POLYCRYSTALLINE SILICON SOLAR CELL PANEL AND MANUFACTURING METHOD THEREOF - An inexpensive polycrystalline silicon solar cell panel is provided by forming a polycrystalline silicon film in which pn junctions are formed by using fewer processes and in less time. Specifically, there is provided a manufacturing method for a polycrystalline silicon solar cell panel including: a process of forming an amorphous silicon film on a substrate surface using a vapor deposition method that uses an n-type or p-type doped vapor deposition material formed of silicon; a process of plasma-doping a surface layer of the amorphous silicon film with a p-type or n-type dopant; and a process of melting the amorphous silicon film by scanning the plasma-doped amorphous silicon film with plasma and performing re-crystallization.06-27-2013
20130167924COMPOSITE POLY-SILICON SUBSTRATE AND SOLAR CELL HAVING THE SAME - A composite poly-silicon substrate for solar cell having a first substrate layer and a second substrate layer is disclosed. The purity of the first substrate layer ranges from 2N to 3N. The second substrate layer is formed on the first substrate layer, and the purity of the second substrate layer ranges from 6N to 9N.07-04-2013
20130199611Method for Forming Flexible Solar Cells - The invention provides for a semiconductor wafer with a metal support element suitable for the formation of a flexible or sag tolerant photovoltaic cell. A method for forming a photovoltaic cell may comprise providing a semiconductor wafer have a thickness greater than 150 μm, the wafer having a first surface and a second surface opposite the first and etching the semiconductor wafer a first time so that the first etching reduces the thickness of the semiconductor wafer to less than 150 μm. After the wafer has been etched a first time, a metal support element may be constructed on or over the first surface; and a photovoltaic cell may be fabricated, wherein the semiconductor wafer comprises the base of the photovoltaic cell.08-08-2013
20130220417SOLAR CELL - A solar cell includes a crystalline Si layer including a pn junction and a semiconductor layer formed on a first main surface of the crystalline Si layer. The semiconductor layer has the same conductivity as a portion of the crystalline Si layer that is in contact with the semiconductor layer. The open circuit voltage under light irradiation onto the solar cell is different from a level difference between the quasi Fermi level of electrons and the quasi Fermi level of holes in the crystalline Si layer.08-29-2013
20130291941Solid-State Dye-Sensitized Solar Cell Using Sodium or Potassium Ionic Dopant - A solid-state hole transport composite material (ssHTM) is provided made from a p-type organic semiconductor and a dopant material serving as a source for either sodium (Na+) or potassium (K+) ions. The p-type organic semiconductor may be molecular (a collection of discrete molecules, that are either chemically identical or different), oligomeric, polymeric materials, or combinations thereof. In one aspect, the p-type organic semiconductor is 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD). The dopant material is an inorganic or organic material salt. A solid-state dye-sensitized solar cell (ssDSC) with the above-described ssHTM, is also provided.11-07-2013
20130298989SEMICONDUCTOR LAMINATE, SEMICONDUCTOR DEVICE, METHOD FOR PRODUCING SEMICONDUCTOR LAMINATE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Provided is a method for manufacturing a semiconductor device. Also provided are: a semiconductor device which can be obtained by the method; and a dispersion that can be used in the method. A method for manufacturing a semiconductor device (11-14-2013
20130306148METHOD FOR FABRICATING SUBSTRATE FOR SOLAR CELL AND SOLAR CELL - The problem addressed by the present invention is providing a technique for fabricating, by a method simpler than conventional methods, a silicon substrate that is effective for light trapping, one surface of which has a textured structure and the other surface of which has higher reflectivity than the surface having the textured structure. The fabrication method for this semiconductor substrate comprises: a sandblasting step in which a first surface of a silicon substrate in an as-sliced state, fabricated by slicing a silicon ingot, is surface treated by sandblasting and, after the sandblasting step, a step for carrying out surface treatment using an etching solution that contains either or both of hydrofluoric acid and nitric acid on the silicon substrate.11-21-2013
20130312828PHOTOVOLTAIC DEVICE WITH BAND-STOP FILTER - Photovoltaic device with band-stop filter. The photovoltaic device includes an amorphous photovoltaic material and a band-stop filter structure having a stopband extending from a lower limiting angular frequency ω11-28-2013
20130312829PHOTOELECTRIC CONVERSION ELEMENT - A photoelectric conversion element contains a transparent conductive film, a p-type amorphous silicon film, an i-type amorphous silicon film, an n-type single-crystal silicon substrate, an i-type amorphous silicon film, a p-type amorphous silicon film, a transparent conductive film, and a metallic film; and the film thickness of the transparent conductive film is greater than or equal to that of the transparent conductive film.11-28-2013
20130340826FLEXIBLE SOLAR CELL ASSEMBLY AND USE OF THE SAME - A flexible solar cell assembly may include a lower glass layer, a lower polyvinyl butyral (PVB) layer, a translucent flexible thin film solar cell, an upper polyvinyl butyral (PVB) layer, an upper glass layer consecutively laminated and closely connected from top to bottom. wherein the translucent flexible thin film solar cell is an amorphous silicon flexible thin film solar cell or an organic flexible thin film solar cell.12-26-2013
20140014177PHOTOELECTRIC CONVERSION DEVICE - It is an object of the present invention to improve photoelectric conversion efficiency in a photoelectric conversion device. The photoelectric conversion device according to the present invention uses a polycrystalline semiconductor layer including a plurality of semiconductor particles coupled together as a light-absorbing layer, each of the semiconductor particles including a group I-III-VI compound, each of the semiconductor particles having a higher composition ratio PI of a group I-B element to a group III-B element in a surface portion thereof than that in a central portion thereof.01-16-2014
20140034126THIN FILM SOLAR CELL MODULE AND METHOD OF MANUFACTURING THE SAME - A solar cell module includes a substrate, a lower electrode on the substrate, a light absorption layer on the lower electrode, an upper electrode on the light absorption layer, and a protective layer on the upper electrode, the protective layer extending along sidewalls of the light absorption layer to the lower electrode, the protective layer including a moisture absorbing material.02-06-2014
20140048133METHOD FOR FORMING DIFFUSION REGIONS IN A SILICON SUBSTRATE - A method of manufacturing solar cells is disclosed. The method comprises depositing an etch-resistant dopant material on a silicon substrate, the etch-resistant dopant material comprising a dopant source, forming a cross-linked matrix in the etch-resistant dopant material using a non-thermal cure of the etch-resistant dopant material, and heating the silicon substrate and the etch-resistant dopant material to a temperature sufficient to cause the dopant source to diffuse into the silicon substrate.02-20-2014
20140060646HIGH OPTICAL QUALITY POLYCRYSTALLINE INDIUM PHOSPHIDE GROWN ON METAL SUBSTRATES BY MOCVD - A new solar cell is disclosed wherein the solar cell comprises a substrate, a VIB metal thin film deposited on the substrate, and a polycrystalline III-V semiconductor thin film deposited on the VIB metal thin film.03-06-2014
20140069499MORPHOLOGICAL AND SPATIAL CONTROL OF InP CRYSTAL GROWTH USING CLOSED-SPACED SUBLIMATION - A new solar cell comprising a substrate, a VIB metal thin film deposited on the substrate, and a polycrystalline III-V semiconductor thin film deposited on the VIB metal thin film.03-13-2014
20140083502SOLAR CELL - Provided is a solar cell including a substrate of a first conductivity type, a first electrode, a dielectric layer, a region of a second conductivity type, and a second electrode. The substrate of the first conductivity type has a front surface and a back surface opposite to each other. The first electrode is disposed on the front surface. The dielectric layer has charges. The dielectric layer is disposed on the front surface and positioned at both sides of the first electrode. The region of the second conductivity type is disposed between the substrate of the first conductivity type and the first electrode, wherein the region of the second conductivity type is disposed only below the first electrode. The second electrode is disposed on the back surface.03-27-2014
20140190564HETEROJUNCTION III-V SOLAR CELL PERFORMANCE07-10-2014
20140238487WAFER FOR SOLAR CELL, METHOD OF PRODUCING WAFER FOR SOLAR CELL, METHOD OF PRODUCING SOLAR CELL, AND METHOD OF PRODUCING SOLAR CELL MODULE - Provided is a wafer for solar cell which can be produced using a polycrystalline semiconductor wafer cut out using a bonded abrasive wire, which wafer can be used for manufacturing a solar cell with high conversion efficiency.08-28-2014
20140290739THIN-FILM SOLAR BATTERY AND METHOD OF MAKING SAME - A thin-film solar battery includes a substrate, a first electrode, a photoelectric conversion layer, and a second electrode. The first electrode, the photoelectric conversion layer, and the second electrode are laminated on the substrate. The photoelectric conversion layer has a laminated layer structure which includes at least a p-type layer and an n-type layer. The p-type layer is formed of Cu, In, Ga, and Se, and a composition ratio of Se of the p-type layer is equal to or higher than 40 atomic % and less than 50 atomic %. The n-type layer is a compound of an element of at least one Group selected from Group 2, Group 7, and Group 12, an element of Group 13, and an element of Group 16, and contains at least In as the element of Group 13 and at least S as the element of Group 16.10-02-2014
20140290740Methods and Apparatuses for Manufacturing Geometric Multicrystalline Cast Silicon and Geometric Multicrystalline Cast Silicon Bodies for Photovoltaics - Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.10-02-2014
20140290741PHOTOELECTRIC CONVERSION APPARATUS - A photoelectric conversion device is disclosed. The photoelectric conversion device includes: first and second electrode layers on a main surface of a substrate, separated by a space; a first semiconductor layer having a first conductivity type and containing crystal grains; a second semiconductor layer on the first semiconductor layer, having a second conductivity type different from the first conductivity type; and one or more first connection conductors on the second electrode layer, coupled to a side of the second semiconductor, and electrically connecting the second semiconductor layer to the second electrode layer. The first semiconductor layer includes: a first portion on the first electrode layer, including crystal grains having a first average size; a second portion disposed at the space on the substrate; and a third portion on the second electrode layer, including crystal grains having a second average size that is larger than the first average size.10-02-2014
20140299187SOLAR CELL - Discussed is a solar cell including a semiconductor substrate, a first tunneling layer entirely formed over a surface of the semiconductor substrate, a first conductive type area disposed on the surface of the semiconductor substrate, and an electrode including a first electrode connected to the first conductive type area.10-09-2014
20140311567SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - A solar cell includes a semiconductor substrate, a tunneling layer on one surface of the semiconductor substrate, a first conductive type area on the tunneling layer, a second conductive type area on the tunneling layer such that the second conductive type area is separated from the first conductive type area, and a barrier area interposed between the first conductive type area and the second conductive type area such that the barrier area separates the first conductive type area from the second conductive type area.10-23-2014
20140332073SOLAR MODULE HAVING UNIFORM LIGHT - A solar module having uniform light for assembling on the top of a building to act as a roof is revealed. It comprises a transparent substrate, at least one solar chip, a hot melt adhesive film, a transparent cover plate, and a diffusion film disposed between the transparent substrate and the solar chip.11-13-2014
20140338747SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME - Discussed is a solar cell including a semiconductor substrate including a base area and a doping area, a doping layer formed on the semiconductor substrate, the doping layer having a conductive type different from the doping area, a tunneling layer interposed between the doping layer and the semiconductor substrate, a first electrode connected to the doping area, and a second electrode connected to the doping layer.11-20-2014
20140360577PHOTOVOLTAIC DEVICE - This photovoltaic device is provided with a crystalline semiconductor substrate, and a first amorphous layer formed on the main surface of the substrate. At the interface between the substrate and the first amorphous layer, electrical conductivity can be improved while suppressing an increase in recombination centers, and power generation efficiency can be improved by having a p-type dopant density profile that decreases stepwise in the film thickness direction from the vicinity of the interface with the substrate.12-11-2014
20140366943Transparent polymer materials for encapsulation of optical devices and photovoltaic module that uses this polymer - Flexible optically transparent nano structured polymer material is based on the composition that includes the derivatives of polyurethanes, hardening agent, antistatic additive and modifiers. The structure of polymer includes nano and micro-domains and clusters of various sizes and configurations that are located in a certain order in the volume of the polymer and play the role of micro lenses that provide the concentration of the light and to concentration of light on the optical device and strengthen wave of optical radiation. The transparent polymer laminated, encapsulated or coated of incident light-facing surface of optical devices including the photovoltaic modules and imparts higher conversion efficiencies to photovoltaic modules, a high optical transparency, is resistant to the humidity and destructive effects of UV, has a good adhesion to the surface of the optical devices, and a good stability to deformation. The transparent polymer materials can be used to increase conversion efficiency of mono-crystalline, multi-crystalline and nana-crystalline, as well as amorphous silicon and based on non-silicon systems such as CIGS solar cells, DSSC and organic.12-18-2014
20140366944PHOTOELECTRIC CONVERSION DEVICE - In order to improve the photoelectric conversion efficiency of a photoelectric conversion device, this photoelectric conversion device is provided with an electrode layer, a first semiconductor layer that is positioned on the electrode layer and contains a polycrystalline semiconductor, and a second semiconductor layer that is positioned on/above the first semiconductor layer and forms a p-n junction with the first semiconductor layer, and an average grain diameter of crystal grains in the first semiconductor layer is larger near the surface on the electrode layer side of the first semiconductor layer than the center of the first semiconductor layer in a thickness direction of the first semiconductor layer. Furthermore, the average grain diameter of the crystal grains in the first semiconductor layer is larger in a surface portion on the second semiconductor layer side of the first semiconductor layer than in the central portion.12-18-2014
20140373919PHOTOVOLTAIC CELL AND MANUFACTURING PROCESS - A photovoltaic cell including a semiconductor substrate of a first conductivity type provided with a main surface, a first layer made from amorphous semiconductor material of first conductivity type in contact with the main surface of the substrate, a first electric contact formed on the first amorphous layer, a second layer of amorphous semiconductor material of a second conductivity type in contact with the main surface of the substrate, a second electric contact formed on the second amorphous layer and an electrically insulating layer, a cell wherein the electrically insulating layer is formed completely on the first amorphous layer and the first and second contacts extend on the electrically insulating layer.12-25-2014
20150047704III-V PHOTOVOLTAIC ELEMENTS - Solar cell structures that have improved carrier collection efficiencies at a heterointerface are provided by low temperature epitaxial growth of silicon on a III-V base. Additionally, a solar cell structure having improved open circuit voltage includes a shallow junction III-V emitter formed by epitaxy or diffusion followed by the epitaxy of Si02-19-2015
20150053264PHOTOELECTRIC CONVERSION DEVICE AND MANUFACTURING METHOD THEREOF - An object is to increase conversion efficiency of a photoelectric conversion device without increase in the manufacturing steps. The photoelectric conversion device includes a first semiconductor layer formed using a single crystal semiconductor having one conductivity type which is formed over a supporting substrate, a buffer layer including a single crystal region and an amorphous region, a second semiconductor layer which includes a single crystal region and an amorphous region and is provided over the butler layer, and a third semiconductor layer having a conductivity type opposite to the one conductivity type, which is provided over the second semiconductor layer. A proportion of the single crystal region is higher than that of the amorphous region on the first semiconductor layer side in the second semiconductor layer, and the proportion of the amorphous region is higher than that of the single crystal region on the third semiconductor layer side.02-26-2015
20150059849SOLAR CELL - A solar cell including a non-amorphous semiconductor substrate of a first conductive type; at least a first semiconductor layer on the non-amorphous semiconductor substrate, the first semiconductor layer including a portion that is amorphous and a plurality of portions having crystal lumps, so that the plurality of portions having the crystal lumps are distributed in the first semiconductor layer; a first electrode on the semiconductor substrate; and a second electrode on the semiconductor substrate.03-05-2015
20150075613SOLAR CELL - A solar cell includes: a crystalline silicon substrate of one conductivity type including a first principal surface, and a second principal surface provided on an opposite side from the first principal surface; a first amorphous silicon layer of the other conductivity type provided on the first principal surface side; a second amorphous silicon layer of the one conductivity type provided on the second principal surface side; a contact layer in contact with the second amorphous silicon layer; a magnesium-doped zinc oxide layer in contact with the contact layer; a first electrode layer provided on the first amorphous silicon layer; and a second electrode layer provided on the magnesium-doped zinc oxide layer. A lattice constant of the contact layer is within a range of plus or minus 30% relative to a lattice constant of the magnesium-doped zinc oxide layer.03-19-2015
20150075614METHOD FOR PRODUCING COMPOUND SEMICONDUCTOR THIN FILM AND SOLAR CELL INCLUDING COMPOUND SEMICONDUCTOR THIN FILM - A method includes the steps of performing a coating or printing of ink for producing a compound semiconductor thin film so as to form a compound semiconductor coating film, the ink including 50% by mass or more of amorphous compound nanoparticles, mechanically applying a pressure to the compound semiconductor coating film, and subjecting the compound semiconductor coating film to a heat-treatment to form a compound semiconductor thin film.03-19-2015
20150107668SOLAR CELL - Disclosed is a solar cell that comprises a substrate made of a semiconductor material, a first amorphous semiconductor layer placed on one region of the substrate and being of one conductivity type, a substantially intrinsic i-type amorphous semiconductor layer provided to extend from another region of the substrate over onto the first amorphous semiconductor layer, a second amorphous semiconductor layer provided on the i-type amorphous semiconductor layer and being of another conductivity type, a first crystalline semiconductor layer placed between the first amorphous semiconductor layer and the i-type amorphous semiconductor layer and being of the one conductivity type, a second crystalline semiconductor layer placed between the first crystalline semiconductor layer and the i-type amorphous semiconductor layer and being of the other conductivity type, and a third amorphous semiconductor layer placed between the second crystalline semiconductor layer and the i-type amorphous semiconductor layer and being of the other conductivity type.04-23-2015
20150114465SOLAR CELL - Disclosed is a solar cell that comprises a substrate made of a semiconductor material, a first amorphous semiconductor layer placed on one region of the substrate and being of one conductivity type, a second amorphous semiconductor layer placed on another region of the substrate and being of another conductivity type, a substantially intrinsic i-type amorphous semiconductor layer provided above the first amorphous semiconductor layer, a third amorphous semiconductor layer provided on the i-type amorphous semiconductor layer and being of the other conductivity type, a first crystalline semiconductor layer placed between the first amorphous semiconductor layer and the i-type amorphous semiconductor layer and being of the one conductivity type, and a second crystalline semiconductor layer placed between the first crystalline semiconductor layer and the i-type amorphous semiconductor layer and being of the other conductivity type.04-30-2015
20150122329SILICON HETEROJUNCTION PHOTOVOLTAIC DEVICE WITH NON-CRYSTALLINE WIDE BAND GAP EMITTER - A photovoltaic device including a single junction solar cell provided by an absorption layer of a type IV semiconductor material having a first conductivity, and an emitter layer of a type III-V semiconductor material having a second conductivity, wherein the type III-V semiconductor material is non-crystalline and has a thickness that is no greater than 50 nm.05-07-2015
20150129034OPTOELECTRONIC DEVICE COMPRISING PEROVSKITES - The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device. The invention additionally provides the use of a layer comprising the porous material as a photoactive layer in an optoelectronic device. Further provided is a photoactive layer for an optoelectronic device, which photoactive layer comprises the porous material.05-14-2015
20160035930GRAIN GROWTH FOR SOLAR CELLS - A solar cell can include a silicon layer formed over a silicon substrate. The silicon layer can have a P-type doped region and an N-type doped region. Portions of the silicon layer can have a grain size larger than other portions of the silicon layer. For example, larger grains of the silicon layer formed within a depletion region between P-type and N-type doped regions can minimize recombination loss at the P-type and N-type doped region boundaries and improve solar cell efficiency.02-04-2016
20160072000FRONT CONTACT HETEROJUNCTION PROCESS - Methods of fabricating solar cells using improved front contact heterojunction processes, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having first and second light-receiving surfaces. A tunnel dielectric layer is disposed on the first and second light-receiving surfaces. An N-type polycrystalline silicon layer is disposed on the portion of the tunnel dielectric layer disposed on the first light-receiving surface. A P-type polycrystalline silicon layer is disposed on the portion of the tunnel dielectric layer disposed on the second light-receiving surface. A transparent conductive oxide layer is disposed on the N-type polycrystalline silicon layer and on the P-type polycrystalline silicon layer. A first set of conductive contacts is disposed on the portion of the transparent conductive oxide layer disposed on the N-type polycrystalline silicon layer. A second set of conductive contacts is disposed on the portion of the transparent conductive oxide layer disposed on the P-type polycrystalline silicon layer.03-10-2016
20160111575MESOSCOPIC SOLAR CELL BASED ON PEROVSKITE LIGHT ABSORPTION MATERIAL AND METHOD FOR MAKING THE SAME - A mesoscopic solar cell, including: a conductive substrate, a hole blocking layer, a mesoporous nanocrystalline layer, an insulation separating layer, and a hole collecting layer, and perovskite light absorption materials. The hole blocking layer, the mesoporous nanocrystalline layer, the insulation separating layer, and the hole collecting layer are sequentially laminated on the conductive substrate. The perovskite semiconductor materials are filled in the mesoporous nanocrystalline layer, the insulation separating layer, and the hole collecting layer, which enables the mesoporous nanocrystalline layer to be an active light absorption layer operating as a photoanode, and enables the insulation separating layer to be a hole transporting layer.04-21-2016
20160126368SOLAR CELL - A solar cell is discussed. The solar cell according to an embodiment includes a semiconductor substrate containing impurities of a first conductive type, a metal oxide layer positioned on the semiconductor substrate, an emitter region positioned on the metal oxide layer and having a second conductive type opposite the first conductive type, a first electrode connected to the emitter region, and a second electrode connected to the semiconductor substrate.05-05-2016
20160155573SOLAR TO ELECTRIC ENERGY CONVERSION DEVICE06-02-2016

Patent applications in class Polycrystalline or amorphous semiconductor

Website © 2023 Advameg, Inc.