Class / Patent application number | Description | Number of patent applications / Date published |
134100300 | Semiconductor cleaning | 89 |
20080196742 | Particle removal method and composition - A method and cleaning solution for cleaning electronic substrates, such as a semiconductor wafers, hard disks, photomasks or imprint molds. The method comprises the steps of contacting a surface of the substrate with a cleaning solution comprised of a polyphosphate, and then removing the cleaning solution from the surface. Additional optional steps include applying acoustic energy to the cleaning solution while the cleaning solution is in contact with the surface, and removing the cleaning solution from the surface by rinsing the surface with a rinsing solution with or without the application of acoustic energy. The cleaning solution comprises a polyphosphate, such as any of the water soluble polyphosphates. Depending on the application, the cleaning solution may also comprise a base and/or a quantity of suspended particles. Complexing agents, amines, biocides, surfactants and/or other substances, may also be added to the cleaning solution. | 08-21-2008 |
20080202551 | Method for cleaning solar cell substrates - The present invention relates to a method for cleaning solar cell substrates comprising (S | 08-28-2008 |
20080223399 | SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD AND STORAGE MEDIUM - A substrate processing apparatus includes: a mounting table to have the substrate placed thereon in a process chamber; a first temperature adjusting mechanism temperature-adjusting the substrate placed on the mounting table; a lifter mechanism lifting up the substrate from the mounting table in the process chamber; and a second temperature adjusting mechanism temperature-adjusting the substrate lifted up from the mounting table by the lifter mechanism, wherein the first temperature adjusting mechanism and the second temperature adjusting mechanism temperature-adjust the substrate to different temperatures respectively. | 09-18-2008 |
20080236615 | METHOD OF PROCESSING WAFERS IN A SEQUENTIAL FASHION - A method and apparatus for processing two substrates is provided. The apparatus comprises a chamber having an upper opening, a lower process volume adapted to retain a process solution, and an upper process volume, wherein the chamber is proportioned to vertically process two substrates. The apparatus further comprises a substrate transfer assembly adapted to transfer two substrates in and out of the chamber through the upper opening and one or more megasonic transducers disposed in the chamber, wherein the one or more megasonic transducers are configured to direct megasonic energy towards the process solution retained in the chamber. | 10-02-2008 |
20080245390 | Method for cleaning semiconductor wafer surfaces by applying periodic shear stress to the cleaning solution - Systems and methods for cleaning particulate contaminants adhered to wafer surfaces are provided. A cleaning media including dispersed coupling elements suspended within the cleaning media is applied over a wafer surface. External energy is applied to the cleaning media to generate periodic shear stresses within the media. The periodic shear stresses impart momentum and/or drag forces on the coupling elements causing the coupling elements to interact with the particulate contaminants to remove the particulate contaminants from the wafer surfaces. | 10-09-2008 |
20080257380 | PROCESS OF CLEANING A SUBSTRATE FOR MICROELECTRONIC APPLICATIONS INCLUDING DIRECTING MECHANICAL ENERGY THROUGH A FLUID BATH AND APPARATUS OF SAME - An apparatus of cleaning a workpiece for microelectronic applications can include fixture to help position the workpiece. In one aspect the apparatus can include a tank and a transducer. In another aspect the apparatus can include a nozzle. The fixture, the tank, the nozzle, or any combination thereof can include an electrostatic dissipative material having a volume resistivity R | 10-23-2008 |
20080264442 | METHOD OF CLEANING SUBSTRATES UTILIZING MEGASONIC ENERGY - A method of cleaning a substrate without causing damage to the substrate is provided. The method comprises the steps of providing a transmitter made of a material that is a good conductor of megasonic energy, positioning the transmitter so that a lower edge is positioned spaced from but closely adjacent to a substantially flat surface of the substrate so that when liquid is applied to the edge and the substrate, a meniscus of liquid is formed between the edge and the substrate, providing a transducer for producing megasonic vibration, coupling the transducer to the transmitter so that a transmission path is created to transmit the megasonic vibration into the transmitter, and creating a barrier in the transmission path so that the liquid vibration is attenuated directly beneath the lower edge of the transmitter. | 10-30-2008 |
20080271749 | Substrate cleaning technique employing multi-phase solution - A method and system for cleaning opposed surfaces of a semiconductor wafer having particulate matter thereon. The method includes generating relative movement between a fluid and the substrate. The relative movement is in a direction that is transverse to a normal to one of the opposed surfaces and creates two spaced-apart flows. Each of the flows is adjacent to one of the opposed surfaces that is different from the opposed surface that is adjacent to the remaining flow of the plurality of flows. The fluid has coupling elements entrained therein, and the relative movement is established to impart sufficient drag upon a subset of the coupling elements to create movement of the coupling elements of the subset within the fluid. In this manner, a quantity of the drag is imparted upon the particulate matter to cause the particulate matter to move with respect to the substrate. | 11-06-2008 |
20080271750 | Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method - A cleaning tool to clean a surface of a liquid confinement system of an immersion lithographic apparatus is disclosed, the liquid confinement system having an aperture to allow passage of a beam of radiation therethrough of an immersion lithographic apparatus. The cleaning tool includes a sonic transducer, a reservoir configured to hold liquid between the sonic transducer and the surface to be cleaned, and a barrier positioned in the reservoir under the aperture to form, in use, a shield to sonic waves. | 11-06-2008 |
20080271751 | APPARATUS AND METHOD FOR CLEANING SEMICONDUCTOR WAFER - An apparatus and a method for cleaning a semiconductor wafer including performing a first cleaning process for removing particles from the semiconductor wafer by injecting a cleaning gas in the chamber and on the semiconductor wafer and then performing a second cleaning process after the first cleaning process by generating an electric field in the chamber and over the semiconductor wafer. | 11-06-2008 |
20080276959 | Method and Apparatus for the Treatment of Objects, in Particular for the Cleaning of Semiconductor Elements - The invention relates to the continuous cleaning of objects, in particular of semiconductor elements, using ultrasound, wherein the objects to be cleaned are arranged within a liquid. Furthermore, the present invention relates to an apparatus for carrying out the method according to the invention. | 11-13-2008 |
20080276960 | Method and Apparatus for Controlled Transient Cavitation - The invention relates to a method for creating transient cavitation comprising the steps of creating gas bubbles having a range of bubble sizes in a liquid, creating an acoustic field and subjecting the liquid to the acoustic field, characterized in that the range of bubble sizes and/or the characteristics of the acoustic field are selected to tune them to each other, thereby controlling transient cavitation in the selected range of bubble sizes. It also relates to an apparatus suitable for performing the method according to the invention. | 11-13-2008 |
20080289651 | METHOD AND APPARATUS FOR WAFER EDGE CLEANING - A wafer edge cleaning system that includes a wafer dry etching chamber and one or more irradiation sources preferably positioned inside the wafer dry etching chamber. The irradiation source such as laser generates a beam aimed at the periphery of the wafer to melt any defects, in particular, black silicon at the edge of the wafer. Preferably, the wafer is mounted on a rotating platform. The invention further provides a method for removing black silicon at the edge of a semiconductor wafer that includes the steps of: patterning the wafer with a trench mask layer; etching the wafer to form a trench thereon; exposing the edge of the wafer to a laser beam to melt the black silicon thereon; stripping the mask and cleaning the wafer. | 11-27-2008 |
20090000640 | SURFACE TREATMENT METHOD, ETCHING METHOD, AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE - A surface treatment method includes: removing a fluorocarbon-containing reaction product from a surface of a workpiece by oxygen gas plasma processing. The workpiece includes a plurality of layers. The fluorocarbon-containing reaction product is deposited by successively etching the layers of the workpiece. The method further includes after removing the reaction product, removing an oxide-containing reaction product from the surface of the workpiece using hydrogen fluoride gas. | 01-01-2009 |
20090014028 | METHOD OF CLEANING SUBSTRATES AND SUBSTRATE CLEANER - There is provided a method of efficiently cleaning substrates without damaging a fine pattern formed thereon. It is a method of cleaning one or more substrates in a system processing one or more substrates as one batch by dipping one or more substrates as one batch, including the steps of: immersing one or more substrates as one batch in a wet etching solution; ultrasonically cleaning one or more substrates as one batch; and drying one or more substrates as one batch. The step of ultrasonically cleaning employs a cleaning solution having a gas dissolved therein to have a degree of saturation of 60% to 100% at an atmospheric pressure, and an ultrasonic wave having a frequency of at least 500 kHz and an energy of 0.02 W/cm | 01-15-2009 |
20090020137 | CLEANING APPARATUS AND METHOD, EXPOSURE APPARATUS HAVING THE CLEANING APPARATUS, AND DEVICE MANUFACTURING METHOD - A cleaning apparatus includes an irradiation unit configured to irradiate onto a substrate a laser beam having a pulse width of a picosecond-level or femtosecond-level range, and to clean the substrate via the laser beam. | 01-22-2009 |
20090032056 | CONTAMINANT REMOVING METHOD, CONTAMINANT REMOVING MECHANISM, AND VACUUM THIN FILM FORMATION PROCESSING APPARATUS - A contaminant removing method of this invention has a step of emitting, in a vacuum, a directional beam to at least one of the lower surface edge and circumferential surface of a substrate to be processed having a thin film formed on its upper surface. | 02-05-2009 |
20090038638 | MEGASONIC CLEANING SYSTEM - A system for cleaning semiconductor packages is provided which comprises a pickhead that is configured to hold the semiconductor packages in an array arrangement and a plurality of nozzles, each of which is constructed and arranged to project a separate jet of cleaning fluid upwardly against the semiconductor packages. A megasonic energy generator is coupled for imparting megasonic energy to the cleaning fluid and a driving device drives relative movement between the plurality of nozzles and the pickhead to direct the said jets to clean the array of packages on the pickhead. | 02-12-2009 |
20090050176 | Method for Removing Particles From a Semiconductor Surface - Method for cleaning a surface is disclosed comprising a cleaning step with an aqueous cleaning medium, which is supplied to said semiconductor surface wherein the cleaning medium comprises cleaning particles suspended in a colloidal form and mechanical agitation is applied to the particles to be removed for at least part of the time during the cleaning step. | 02-26-2009 |
20090056744 | WAFER CLEANING COMPOSITIONS AND METHODS - Compositions and methods of removing debris including organic debris from a hydrophobic surface during semiconductor processing are disclosed. The method includes exposing a semiconductor wafer having debris, including organic debris, thereon to a cleaning solution including an oxidizing agent and at least one surfactant. | 03-05-2009 |
20090065027 | SUBSTRATE CLEANING APPARATUS, SUBSTRATE CLEANING METHOD, AND SUBSTRATE TREATMENT APPARATUS - A substrate cleaning apparatus is capable of cleaning an entire periphery of a substrate end portion at a time by simple control without polishing the end portion and without generating plasma. The substrate cleaning apparatus has a mounting table | 03-12-2009 |
20090071506 | Debris removal in high aspect structures - A method of debris removal is provided. The method includes positioning a nanometer-scaled tip adjacent to a piece of debris on a substrate. The method also includes adhering the piece of debris to the tip. In addition, the method also includes removing the piece of debris from the substrate by moving the tip away from the substrate. | 03-19-2009 |
20090095320 | Composition for Removing Photresist Layer and Method for Using it - A new composition for removing a photoresist layer and a method for using the same are disclosed. The composition comprises a polar solvent and an oxidant. The composition according to the present invention comprises chemical substances with less toxicity and flammability at lower contents, which makes it more friendly to environment and decreases the expense for disposing the chemical waste. The method for using the composition shortens the time for cleaning and removes the residue more completely, thereby enhancing the electrical conductivity. | 04-16-2009 |
20090095321 | METHOD FOR CLEANING SILICON WAFER - A method for cleaning a silicon wafer includes (S | 04-16-2009 |
20090107519 | METHOD AND SYSTEM FOR CHEMICALLY ENHANCED LASER TRIMMING OF SUBSTRATE EDGES - An apparatus for processing a peripheral portion of a substrate includes a housing and a spin chuck mounted within the housing and configured to support the substrate in a substantially horizontal orientation. The apparatus also includes a fluid dispense nozzle coupled to the housing and proximate to the peripheral portion of the substrate. The fluid dispense nozzle is in fluid communication with a source of a chemical and configured to direct a flow of the chemical to the peripheral portion of the substrate located at a first radial distance from a center of the substrate. The apparatus further includes a light guide optically coupled to a laser source. The light guide is configured to direct radiation to the peripheral portion of the substrate located at a second radial distance from the center of the substrate greater than the first radial distance. | 04-30-2009 |
20090114246 | Methods For Treating Surfaces - Some embodiments include methods for treating surfaces. Beads and/or other insolubles may be dispersed within a liquid carrier to form a dispersion. A transfer layer may be formed across a surface. The dispersion may be directed toward the transfer layer, and the insolubles may impact the transfer layer. The impacting may generate force in the transfer layer, and such force may be transferred through the transfer layer to the surface. The surface may be a surface of a semiconductor substrate, and the force may be utilized to sweep contaminants from the semiconductor substrate surface. The transfer layer may be a liquid, and in some embodiments may be a cleaning solution. | 05-07-2009 |
20090139541 | Gas dissolved water producing apparatus and method thereof and ultrasonic cleaning equipment and method thereof - A gas dissolved water producing apparatus includes a gas dissolving section, a gas channel for guiding a gas into the dissolving section, a first water channel for guiding water into the dissolving section, a gas dissolved water discharge channel, and a second water channel for guiding the water without passing through the dissolving section. The second water channel joins the gas dissolved water discharge channel to control the solution gas dissolved in the gas dissolved water can be controlled to a prescribed level of concentration. | 06-04-2009 |
20090139542 | APPARATUS AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An apparatus for manufacturing a semiconductor device, includes: an application section configured to apply a force to a defect present on a surface of a substrate; a defect inspector configured to detect a position of the defect; a position comparator configured to compare the position of the defect between a plurality of results of the detection; and a defect remover configured to remove the defect from the substrate on basis of the results of the detection. | 06-04-2009 |
20090241988 | PHOTORESIST AND ANTIREFLECTIVE LAYER REMOVAL SOLUTION AND METHOD THEREOF - An aqueous solution composition may include an organic base hydroxide, potassium hydroxide, a compound selected from the group of compounds consisting of 2-mercaptobenzimidazole, 1-Phenyl-1H-tetrazole-5-thiol and 2-MerCaptoBenzoThiazole, hydrogen peroxide and deionized water. A method for removing photoresist and anti-reflective coating from a wafer using such a solution is also disclosed. | 10-01-2009 |
20090277472 | Photoresist Stripping Method and Apparatus - The present invention pertains to methods for removing unwanted material from a work piece. More specifically, the invention pertains to stripping photoresist material from, e.g., a semiconductor wafer during semiconductor manufacturing. Methods involve implementing a pedestal for supporting a wafer, which pedestal has a low emissivity surface to reduce heat transfer by radiation. | 11-12-2009 |
20090301518 | Substrate Processing Apparatus and Substrate Processing Method - A substrate processing apparatus includes: a polishing device | 12-10-2009 |
20090320875 | DUAL CHAMBER MEGASONIC CLEANER - Embodiments described herein relate to semiconductor device manufacturing, and more particularly to a vertically oriented dual megasonic module for simultaneously cleaning multiple substrates. In one embodiment, an apparatus for cleaning multiple substrates is provided. The apparatus comprises an outer tank for collecting overflow processing fluid comprising at least one sidewall and a bottom. A first inner module adapted to contain a processing fluid is positioned partially within the outer tank. The first inner module comprises one or more roller assemblies to hold a substrate in a substantially vertical orientation. A second inner module adapted to contain a processing fluid is positioned partially within the outer tank. The second inner module comprises one or more roller assemblies adapted to hold a substrate in a substantially vertical orientation. Each inner module contains a transducer adapted to direct vibrational energy through the processing fluid toward the substrates. | 12-31-2009 |
20100000569 | CONTAMINATION MONITORING AND CONTROL TECHNIQUES FOR USE WITH AN OPTICAL METROLOGY INSTRUMENT - A technique is provided for monitoring and controlling surface contaminants on optical elements contained within the optical path (or sub-path) of an optical metrology instrument. The technique may be utilized in one embodiment in such a manner as to not require that additional components and/or instrumentation be coupled to, or integrated into, existing metrology equipment. Surface contaminants on optical elements within an optical metrology instrument are monitored so that cleaning procedures can be performed as deemed necessary. The cleaning procedures may include the use of exposing the optical elements to optical radiation. The optical metrology instrument may be an instrument which operates at wavelengths that include vacuum ultra-violet (VUV) wavelengths. | 01-07-2010 |
20100043822 | REMOVING BUBBLES FROM A FLUID FLOWING DOWN THROUGH A PLENUM - In an example embodiment, a top proximity head for depositing fluids on a semiconductor wafer includes a delivery bore which receives fluid. The top proximity head includes a plenum that is connected to the delivery bore by numerous input channels into which fluid flows from the delivery bore. Each input channel has an inverted V-shaped opening which urges the upward flow of any air bubbles. From the plenum, the fluid flows through output channels out of the top proximity head to form a meniscus. The fluid is suctioned from the meniscus back into the top proximity head through return channels that lead to a return bore. A passage connects the delivery bore with the return bore, allowing air bubbles to escape from the delivery bore into the return bore. The passage allows a negligible amount of fluid to flow directly between the two bores rather than through the plenum. | 02-25-2010 |
20100043823 | METHODS OF CLEANING SEMICONDUCTOR DEVICES AT THE BACK END OF LINE USING AMIDOXIME COMOSITIONS - The present invention relates to aqueous compositions comprising amidoxime compounds and methods for cleaning plasma etch residue from semiconductor substrates including such dilute aqueous solutions. The compositions of the invention may optionally contain one or more other acid compounds, one or more basic compounds, and a fluoride-containing compound and additional components such as organic solvents, chelating agents, amines, and surfactants. The invention also relates to a method of removing residue from a substrate during integrated circuit fabrication. | 02-25-2010 |
20100108093 | ACOUSTIC ASSISTED SINGLE WAFER WET CLEAN FOR SEMICONDUCTOR WAFER PROCESS - A method for cleaning a substrate is provided that includes applying a liquid medium to a surface of the substrate such that the liquid medium substantially covers a portion of the substrate that is being cleaned. One or more transducers are used to generate acoustic energy. The generated acoustic energy is applied to the substrate and the liquid medium meniscus such that the applied acoustic energy to the liquid medium prevents cavitation within the liquid medium. The acoustic energy applied to the substrate provides maximum acoustic wave displacement to acoustic waves introduced into the liquid medium. The acoustic energy introduced into the substrate and the liquid medium enables dislodging of the particle contaminant from the surface of the substrate. The dislodged particle contaminants become entrapped within the liquid medium and are carried away from the surface of the substrate by the liquid medium. | 05-06-2010 |
20100170531 | Methods of Removing Particles From Over Semiconductor Substrates - Some embodiments include methods of removing particles from over surfaces of semiconductor substrates. Liquid may be flowed across the surfaces and the particles. While the liquid is flowing, electrophoresis and/or electroosmosis may be utilized to enhance transport of the particles from the surfaces and into the liquid. In some embodiments, temperature, pH and/or ionic strength within the liquid may be altered to assist in the removal of the particles from over the surfaces of the substrates. | 07-08-2010 |
20100192974 | METHOD FOR ULTRASONIC CLEANING OF CONTAMINATION ATTACHED TO A SURFACE OF AN OBJECT - An ultrasonic cleaning method in which ultrasonic cleaning of a contamination attached to a surface of an object to be cleaned is performed by directing toward the object to be cleaned, a cleaning liquid to which ultrasonic waves are applied by alternately focusing first ultrasonic waves having a frequency of 1 to 10 MHz and second ultrasonic waves having a frequency equal to or lower than ½ of that of the first ultrasonic waves. A focus position adjustment device is used to adjust the distance of the focus position relative to the surface of the object to be cleaned, and a moving device is used to movie at least one of the ultrasonic wave generation device and a support base for the object so that the effect of the ultrasonic waves generated by the ultrasonic wave generation device on the surface of the object to be cleaned is uniform. | 08-05-2010 |
20100258142 | APPARATUS AND METHOD FOR USING A VISCOELASTIC CLEANING MATERIAL TO REMOVE PARTICLES ON A SUBSTRATE - The embodiments provide apparatus and methods for removing particles from a substrate surface, especially from a surface of a patterned substrate (or wafer). The cleaning apparatus and methods have advantages in cleaning patterned substrates with fine features without substantially damaging the features on the substrate surface. The cleaning apparatus and methods involve using a viscoelastic cleaning material containing a polymeric compound with large molecular weight, such as greater than 10,000 g/mol. The viscoelastic cleaning material entraps at least a portion of the particles on the substrate surface. The application of a force on the viscoelastic cleaning material over a sufficiently short period time causes the material to exhibit solid-like properties that facilitate removal of the viscoelastic cleaning material along with the entrapped particles. A number of forces can be applied over a short period to access the solid-like nature of the viscoelastic cleaning material. Alternatively, when the temperature of the viscoelastic cleaning material is lowered, the visoelastic cleaning material also exhibits solid-like properties. | 10-14-2010 |
20100275951 | SEMICONDUCTOR PROCESSING METHOD - A process for treating the surface of a substrate in the manufacture of a semiconductor device. The process comprises providing a concentrated acid or base, a peroxide and water, and delivering the acid or base, the peroxide and the water to the surface of the substrate. The acid or base and the water are delivered separately to the surface of the substrate and allowed to mix on the surface, and the water is delivered in pulses. The present invention also provides an apparatus adapted to carry out this process. | 11-04-2010 |
20100294306 | METHOD AND SOLUTION FOR CLEANING SEMICONDUCTOR DEVICE SUBSTRATE - Provided is a method for cleaning a semiconductor device substrate, which is excellent in removability and re-adhesion-preventing properties of contaminations of fine particles or organic matter, metal contamination and combined contamination of organic matter and metal, which are adhered to a substrate surface, and which can highly clean the substrate surface without corroding it even when an intense ultrasonic wave is not applied. | 11-25-2010 |
20110000504 | Method and Apparatus for Controlling Optimal Operation of Acoustic Cleaning - Methods and apparatuses for cleaning a surface of a substrate are presented. The method comprises positioning a substrate at a controllable distance from a piezoelectric transducer, supplying a cleaning liquid between the substrate and the transducer, applying an oscillating acoustic force to the cleaning liquid by actuating the transducer, and moving the transducer relative to the substrate. The method further comprises, while moving the transducer relative to the substrate, measuring a value that indicates a distance between a surface of the substrate and the transducer, comparing the measured value to a desired value, and adjusting the distance between the surface and the transducer so that the measured value is maintained substantially equal to the desired value. The measured value may be the distance between the surface of the substrate and the transducer or a phase shift between an alternating current and voltage applied to the transducer. | 01-06-2011 |
20110041874 | POLYMER REMOVING APPARATUS AND METHOD - A polymer removing apparatus for use in removing polymer annularly adhered to a peripheral portion of a target substrate includes a processing chamber for accommodating the target substrate having the polymer annularly adhered to the peripheral portion thereof; a mounting table for mounting the target substrate thereon; and a laser irradiation unit for irradiating ring-shaped laser light at once to the whole polymer annularly adhered to the target substrate. The polymer removing apparatus further includes an ozone gas supply unit for supplying an ozone gas to the polymer annularly adhered to the target substrate and a gas exhaust unit for exhausting the ozone gas. | 02-24-2011 |
20110088719 | Method and Apparatus for Cleaning a Semiconductor Substrate - Disclosed are systems and methods for cleaning semiconductor substrates, wherein a nucleation structure having nucleation sites is mounted facing a surface of the substrate to be cleaned. The substrate and structure are brought into contact with a cleaning liquid, which is subsequently subjected to acoustic waves of a given frequency. The nucleation template features easier nucleation formation than the surface that needs to be cleaned by, for example, causing the template to have a higher contact angle when in contact with the liquid than the substrate surface to be clean. Therefore, bubbles nucleate on the structure and not on the surface to be cleaned. | 04-21-2011 |
20110155169 | ULTRASONIC CLEANING FLUID, METHOD AND APPARATUS - A cleaning fluid including dispersed gas avoids using ultrasonic energy to induce cavitation by subjecting a liquid containing dissolved gas to a pressure reduction in a bubble machine, to generate a gas/liquid dispersion. The cleaning fluid can be used to clean articles such as semiconductor wafers using a device that includes a holder and a vibrator for supplying ultrasonic or megasonic energy to the article. | 06-30-2011 |
20110290277 | Methods and Apparatus for Cleaning Semiconductor Wafers - A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5λ/N for each rotation of the chuck, where λ is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5λn during the cleaning process, where λ is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1. | 12-01-2011 |
20120012134 | METHOD FOR CLEANING ELECTRONIC MATERIAL AND DEVICE FOR CLEANING ELECTRONIC MATERIAL - A resist on an electronic material is surely separated and removed in a short time. The electronic material is cleaned with a sulfuric acid solution containing persulfuric acid to separate and clean the resist, and thereafter wet cleaning is performed with gas dissolved water. By using gas dissolved water for performing wet cleaning after the resist separation with the sulfuric acid solution containing persulfuric acid, the time required for cleaning can be sharply reduced as compared with that of a former method. The sulfuric acid solution containing persulfuric acid is preferably one produced by electrolyzing a sulfuric acid solution. A sulfuric acid solution which is discharged from a resist separation and cleaning device and in which the persulfuric acid concentration has decreased is supplied to an electrolytic reactor for regeneration, and then the sulfuric acid solution, in which the persulfuric acid concentration has been sufficiently increased, is circulated to the cleaning device, whereby the resist can be efficiently separated and removed with the high-concentration persulfuric acid and the repeated use of the sulfuric acid can be achieved. | 01-19-2012 |
20120024315 | METHOD FOR MEGASONIC PROCESSING OF AN ARTICLE - A method for megasonic processing of an article. In one aspect, the invention may be a method of processing semiconductor wafers comprising: supporting the semiconductor wafer substantially horizontally; positioning a rod-like probe above an upper surface of the semiconductor wafer in an orientation other than normal to the upper surface of the substrate; applying a fluid to the upper surface of the semiconductor wafer so that a film of the fluid is formed between at least a portion of the rod-like probe and the upper surface of the semiconductor wafer; and vibrating the rod-like probe to transmit energy to the upper surface of the semiconductor wafer via the film of the fluid to loosen particles on the upper surface of the semiconductor wafer. | 02-02-2012 |
20120031427 | Methods For Stabilizing Contact Surfaces of Electrostatic Chucks - Methods for stabilizing a ceramic contact surface of an electrostatic chuck, wherein the electrostatic chuck can be disposed within a reaction chamber of a semiconductor wafer processing assembly including a radio frequency source and a coolant gas supply are described herein. The method may include: clamping electrostatically a conditioning wafer to the ceramic contact surface of the electrostatic chuck; and cycling an output power of the radio frequency source and an output pressure of the coolant gas supply for multiple hot/cold cycles. Each of the hot/cold cycles includes a hot abrasion state and a cold abrasion state. At the hot abrasion state, the output power of the radio frequency source is relatively high and the output pressure of the coolant gas supply is relatively low to yield a relatively hot conditioning wafer. At the cold abrasion state, the output power of the radio frequency source is relatively low and the output pressure of the coolant gas supply is relatively high to yield a relatively cool conditioning wafer. | 02-09-2012 |
20120118318 | SELF-CLEANING COATING COMPOSITION - The present invention relates to compositions with self-cleaning properties. More particularly, the invention concerns coatings or paints comprising particles coated with a catalytically active composition. In particular, a self-cleaning coating composition (paint) is provided, comprising micro-sized particles coated with a functional layer, wherein the micro-sized particles are hollow or solid beads, or any combination/ratio of hollow and solid beads, wherein the beads comprise one or more material(s) selected from ceramic material(s); polymeric material(s); cermet material(s); metallic material(s); pigmented material(s); light-absorbing and/or light reflecting material(s); including any combination thereof, wherein said layer is covalently bound to said particles, wherein the photocatalytic layer comprises TiO2 in the crystal form of anatase; and wherein the coating composition (paint) comprises less than 0.1 anatase particles derived/released from the micro-sized beads, determined as weight/weight of released anatase/total amount of anatase. The invention provides paint essentially without presence of unbound anatase crystals which is highly undesired, as it is believed that their presence has a negative influence on essential components of the paint, such as binder, pigment and/or additives and furthermore, anatase may cause eye, skin, and respiratory tract irritation. | 05-17-2012 |
20120211024 | METHOD AND APPARATUS FOR TREATING SUBSTRATES - The application describes several methods and an apparatus for treatment of at least partial areas of a substrate. In said methods, at least one liquid is applied to at least one partial area of the substrate and electromagnetic radiation is introduced into this liquid, in order to achieve a desired effect in accordance with the respective method. In one method, radicals are generated in the liquid by means of UV radiation prior to application of the liquid, wherein generation of the radicals occurs directly before applying the liquid to the substrate, such that at least a portion of the radicals reaches the substrate. In one method, in which ions are removed from at least partial areas of the surface of a substrate and near surface layers of said substrate, a liquid, which is heated above ambient temperature is applied to the substrate, in order to form a liquid film on at least a partial area of said substrate, wherein electromagnetic radiation is introduced into said liquid film such that at least a portion of the radiation reaches the substrate surface. In another method for changing the surface characteristics of a substrate having an at least partially hydrophobic substrate surface such that at least a portion of said hydrophobic surface gets a hydrophilic surface characteristic, a liquid is applied to at least the partial area of the surface of the substrate, whose surface characteristic is to be changed, and UV radiation of a predetermined range of wavelength is guided through said liquid onto at least the partial area of the surface of said substrate, whose surface characteristic is to be changed. The methods may be performed in a common apparatus in any desired order in series and/or in parallel. | 08-23-2012 |
20120266913 | Methods Of Removing Particles From Over Semiconductor Substrates - Some embodiments include methods of removing particles from over surfaces of semiconductor substrates. Liquid may be flowed across the surfaces and the particles. While the liquid is flowing, electrophoresis and/or electroosmosis may be utilized to enhance transport of the particles from the surfaces and into the liquid. In some embodiments, temperature, pH and/or ionic strength within the liquid may be altered to assist in the removal of the particles from over the surfaces of the substrates. | 10-25-2012 |
20130000669 | RHEOLOGICAL FLUIDS FOR PARTICLE REMOVAL - Methods and apparatus for cleaning a substrate (e.g., wafer) in the fabrication of semiconductor devices utilizing electrorheological (ER) and magnetorheological (MR) fluids to remove contaminant residual particles from the substrate surface are provided. | 01-03-2013 |
20130008462 | Uniform Fluid Manifold For Acoustic Transducer - A fluid manifold comprised of a manifold adapted to deliver fluid directly into a gap formed between a surface of a substrate and an acoustic transducer. The fluid is delivered into the gap at a variable rate along a length of the manifold. Preferably, the manifold includes a plurality of apertures positioned along the length of the manifold for dispensing the fluid into the gap at the variable rate. | 01-10-2013 |
20130056024 | SUBSTRATE CLEANING METHOD AND SEMICONDUCTOR MANUFACTURING APPARATUS - A substrate cleaning method for cleaning a substrate on which a film is formed with a pattern in a vacuum-state processing chamber includes a preprocessing step where the film formed on the substrate on which the pattern has been formed by an etching process is cleaned by using a cleaning gas; and a consecutive step including an oxidation step where residues attached on a surface of the pattern are oxidized by using an oxidizing gas and a reduction step where the oxidized residues are reduced by using a reducing gas, which are consecutively carried out posterior to the preprocessing step. The gases used in the preprocessing step and the consecutive step are clustered by ejecting the gases into the processing chamber from a gas nozzle whose internal pressure P | 03-07-2013 |
20130061873 | METHOD AND APPARATUS FOR LIQUID TREATMENT OF WAFER SHAPED ARTICLES - In an apparatus and method for treating a wafer-shaped article, a spin chuck is provided for holding a wafer-shaped article in a predetermined orientation wherein a lower surface of the wafer-shaped article is spaced a predetermined distance from an upper surface of the spin chuck. A heating assembly comprising at least one infrared heater is mounted above the upper surface of the spin chuck and below a wafer-shaped article when mounted on the spin chuck. The heating assembly is stationary in relation to rotation of the spin chuck. | 03-14-2013 |
20130152965 | SEMICONDUCTOR CLEANING DEVICE AND SEMICONDUCTOR CLEANING METHOD - A semiconductor cleaning device includes an external electrode opposed to a side surface of the semiconductor device; a base configured to allow arrangement of the semiconductor device, and having an opening positioned between the side surface of the semiconductor device in the arranged state and the external electrode, and located below the side surface of the semiconductor device; a frame having an electrically insulating property, being in contact with the external electrode, arranged on the base and opposed to the side surface of the semiconductor device; and suction means connected to the opening in the base and being capable of taking in the foreign matter through the opening. Thereby, the semiconductor cleaning device and a semiconductor cleaning method that can remove the foreign matter adhered to the side surface of the semiconductor device and can prevent re-adhesion of the removed foreign matter can be obtained. | 06-20-2013 |
20130167867 | Composition And Method For Removing Photoresist And Bottom Anti-Reflective Coating For A Semiconductor Substrate - A composition for removing photoresist and bottom anti-reflective coating from a semiconductor substrate is disclosed. The composition may comprise a nontoxic solvent, the nontoxic solvent having a flash point above 80 degrees Celsius and being capable of dissolving acrylic polymer and phenolic polymer. The composition may further comprise Tetramethylammonium Hydroxide (TMAH) mixed with the nontoxic solvent. | 07-04-2013 |
20130174867 | CLEANING LIQUID FOR SEMICONDUCTOR DEVICE SUBSTRATES AND METHOD OF CLEANING SUBSTRATE FOR SEMICONDUCTOR DEVICES - The invention relates to a cleaning liquid for semiconductor device substrates comprising the following components (A) to (D) and a method of cleaning semiconductor device substrates:
| 07-11-2013 |
20130192630 | FOREIGN MATTER REMOVAL DEVICE AND FOREIGN MATTER REMOVAL METHOD - A device includes a jig having a plate with through-holes formed therein and also having a frame formed on the plate so as to be able to accommodate a plurality of semiconductor chips in spaced relationship, a foreign matter capture member having a first charge section with a first flat surface and a second charge section with a second flat surface, the second charge section being insulated from the first charge section, charging means for positively charging the first flat surface and negatively charging the second flat surface, and sliding means for causing either the jig or the foreign matter capture member to slide relative to the other in such a manner that the through-holes of the jig face and are spaced a predetermined distance from the first and second flat surfaces. The through-holes are formed in different regions defined and surrounded by the frame. | 08-01-2013 |
20130206165 | Damage Free Cleaning Using Narrow Band Megasonic Cleaning - This invention relates to apparatuses and methods for cleaning surfaces, including the surfaces of semiconductor wafers, with ultrasonic and megasonic energies of defined profiles, capable of achieving said cleaning without causing damage to nanodimensioned features of the substrates. | 08-15-2013 |
20130233342 | METHOD OF MANUFACTURING INTEGRATED CIRCUIT DEVICES - A method for manufacturing integrated circuit devices. In one aspect, the invention may be a method of manufacturing integrated circuit devices comprising: supporting it semiconductor wafer in a substantially horizontal orientation; providing a transducer assembly comprising a probe having a forward portion, a rear portion and no more than one piezoelectric transducer element coupled to the rear portion; supporting the transducer assembly so that the forward portion is adjacent but spaced from a first surface of the semiconductor wafer; rotating the semiconductor wafer; applying a fluid to the first surface of the semiconductor wafer to form a film of the fluid between a portion of the forward portion and the first surface of the semiconductor wafer; and transmitting acoustical energy generated by the piezoelectric transducer element into the film of the fluid via the forward portion, the acoustical energy loosening particles from the first surface of the semiconductor wafer. | 09-12-2013 |
20130312788 | ULTRASONIC CLEANING METHOD AND ULTRASONIC CLEANING APPARATUS - An ultrasonic cleaning method for cleaning an object in a liquid in which a first gas is dissolved includes preparing the liquid in which the first gas is dissolved and introducing a second gas into the liquid while irradiating the liquid with ultrasonic waves so as to realize a state where bubbles containing the first gas dissolved in the liquid continue to be generated. The object is cleaned in the state where the bubbles containing the first gas continue to be generated. | 11-28-2013 |
20130312789 | ULTRASONIC CLEANING METHOD AND ULTRASONIC CLEANING APPARATUS - An ultrasonic cleaning method for cleaning an object in a liquid in which a gas is dissolved includes preparing the liquid in which the gas is dissolved and cleaning the object while irradiating the liquid with ultrasonic waves so that a region, where a spatial rate of change of a refractive index of the liquid in which the gas is dissolved is large relative to a case where ultrasonic waves are not applied, appears along a direction in which the ultrasonic waves travel. | 11-28-2013 |
20130333723 | METHOD FOR PROCESSING FLAT ARTICLES - A method for processing flat articles with acoustical energy. The inventive system method can remove particles from both sides of a wafer more efficiently and effectively. In one aspect, the invention is a method for processing flat articles wherein a liquid is applied to both major surfaces of the flat article. A first transducer assembly is positioned adjacent to a first of the major surfaces of the flat article and a second member is positioned adjacent to a second of the major surfaces. The first transducer assembly generates and transmits acoustical energy to the first major surface of the flat article while the second member either: (1) reflects the acoustical energy generated by the first transducer assembly back to the second major surface of the flat article; and/or (2) generates and transmits acoustical energy to the second major surface of the flat article. | 12-19-2013 |
20140007902 | METHOD OF STRIPPING PHOTORESIST ON A SINGLE SUBSTRATE SYSTEM - Provided is a method and system for stripping an ion implanted resist or performing a post-ash clean using a single substrate tool. Cleaning objectives and cleaning operating variables are selected for optimization. The first step immerses the substrate in a first treatment chemical, while concurrently irradiating the substrate with UV light, the process completed in a first process time, a first flow rate, and a first rotation speed of the substrate. The second step dispenses onto the substrate a second treatment chemical at a second temperature and a second composition, the second treatment chemical dispensed at a dispense temperature, and completed in a second process time and a second rotation speed. The two or more selected cleaning operating variables comprise UV wavelength, UV power, first concentration, first rotation speed, first flow rate, second process time, second rotation speed, percentage of residue removal, and dispense temperature. | 01-09-2014 |
20140026923 | Method For Cleaning Wafers Using a Polycarboxylate Solution - A cleaning solution and method for removing submicron particles from the surface of an electronic substrate such as a semiconductor wafer. The cleaning solution comprises a polycarboxylate polymer, a base and water. The method comprises the step of contacting a surface of the substrate with a cleaning solution comprised of the polycarboxylate polymer. Additional optional steps in the method include applying acoustic energy to the cleaning solution and/or rinsing the surface with a rinsing solution with or without the application of acoustic energy to the rinsing solution. | 01-30-2014 |
20140053868 | Method And Apparatus For Surface Cleaning - Embodiments of the present disclosure relate to methods and apparatus for reduction of particle defects from a semiconductor surface, such as for example the reduction of sub 100 micron defects. Methods and apparatus of the present disclosure are particularly useful in the manufacture of semiconductor devices when employing extreme ultraviolet photolithography. In some embodiments, a fluid stream is provided through a nozzle at conditions such that cavitation bubbles are formed, the cavitation bubbles being present in a stable cavitation state or regime. The fluid stream is flowed over at least a portion of the surface. A shockwave is generated or created in the fluid stream. The shockwave momentarily increases acoustic pressure in the fluid causing the cavitation bubbles to collapse and produce a jet or pulse of high fluid flow which removes particle defects from the surface. | 02-27-2014 |
20140060573 | SUBSTRATE TREATMENT METHOD AND SUBSTRATE TREATMENT APPARATUS - A substrate treatment method for removing a resist from a front surface of a substrate is provided. The method includes: a liquid mixture film forming step of forming a liquid film of a liquid mixture of a sulfuric acid-containing liquid and an organic solvent on a front surface of a substrate held by a substrate holding unit; and an infrared radiation applying step of providing a heater in opposed relation to the front surface of the substrate and applying infrared radiation emitted from the heater to the front surface of the substrate on which the liquid film of the liquid mixture is retained. | 03-06-2014 |
20140096792 | PROCESS GAS GENERATION FOR CLEANING OF SUBSTRATES - Provided is a method and system for cleaning a substrate with a cleaning system comprising a pre-treatment system and a wet clean system. One or more objectives for the pre-treatment system are selected and two or more pre-treatment operating variables including UV dose, substrate temperature, oxygen partial pressure, oxygen and ozone partial pressure, and/or total pressure, are optimized to meet the pre-treatment objectives, using metrology measurements. The substrate includes a layer to be cleaned and an underlying dielectric layer having a k-value. A pre-treatment gas comprising oxygen and/or ozone is delivered onto a surface of the substrate and irradiated with a UV device, generating oxygen radicals. Cleaning of the substrate in the pre-treatment process is set at less than 100% in order to ensure the change in k-value of the substrate is within a set range for the substrate application. | 04-10-2014 |
20140096793 | UV TREATMENT OF POLISHED WAFERS - A method is provided for cleaning a surface of a semiconductor wafer comprising: (a) contacting the front surface of the wafer with a slurry comprising an abrasive agent and a polymeric rheological modifier; (b) contacting the front surface of the semiconductor wafer with an oxidant; and (c) irradiating the front surface of the semiconductor wafer with ultraviolet light. | 04-10-2014 |
20140102474 | SUBSTRATE CLEANING APPARATUS, SUBSTRATE CLEANING METHOD, AND COMPUTER-READABLE STORAGE MEDIUM - A substrate cleaning apparatus for cleaning a substrate back surface includes a first substrate supporting portion supporting the substrate at a first area of the substrate back surface, the back surface facing down; a second substrate supporting portion supporting the substrate at a second area of the substrate back surface, the second area being separated from the first area; a cleaning liquid supplying portion supplying cleaning liquid to the substrate back surface; a drying portion drying the second area of the substrate back surface; and a cleaning portion cleaning a third area of the substrate back surface when the substrate is supported by the first substrate supporting portion, the third area including the second area, and cleaning a fourth area of the substrate back surface when the substrate is supported by the second substrate supporting portion, the fourth area excluding the second area. | 04-17-2014 |
20140130825 | SUBSTRATE CLEANING METHOD AND SYSTEM USING ATMOSPHERIC PRESSURE ATOMIC OXYGEN - Provided is a method and system for cleaning a substrate with a cleaning system comprising a pre-treatment system using an atomic oxygen generator. The substrate includes a layer to be cleaned and an underlying dielectric layer having a k-value. Pre-treatment gas comprising oxygen and an inert gas are delivered into an atomic oxygen generator, generating a process gas containing atomic oxygen. A portion of a surface of the substrate is exposed to the process gas while controlling two or more cleaning operating variables to ensure meeting two or more cleaning objectives and ensure completion of cleaning in the pre-treatment process time. In an embodiment, cleaning of the substrate in the pre-treatment process is set at less than 100 percent and a subsequent wet cleaning process is used to complete the substrate cleaning. In another embodiment, the pre-treatment system is configured to complete cleaning of the substrate. | 05-15-2014 |
20140144463 | CONTROLLING CLEANING OF A LAYER ON A SUBSTRATE USING NOZZLES - Provided is a method for cleaning an on implanted resist layer or a substrate after an ashing process. A duty cycle for turning on and turning off flows of a treatment liquid using two or more nozzles is generated. The substrate is exposed to the treatment liquid comprising a first treatment chemical, the first treatment chemical with a first film thickness, temperature, total flow rate, and first composition. A portion of a surface of the substrate is concurrently irradiated with UV light while controlling the selected plurality of cleaning operating variables in order to achieve the two or more cleaning objectives. The cleaning operating variables comprise two or more of the first temperature, first composition, first film thickness, UV wavelength, UV power, first process time, first rotation speed, duty cycle, and percentage of residue removal are optimized to achieve the two or more cleaning objectives, | 05-29-2014 |
20140174465 | Cleaning Agent for Silicon Wafer - A cleaning agent for a silicon wafer (a first cleaning agent) contains at least a water-based cleaning liquid and a water-repellent cleaning liquid for providing at least a recessed portion of an uneven pattern with water repellency during a cleaning process. The water-based cleaning liquid is a liquid in which a water-repellent compound having a reactive moiety chemically bondable to Si element in the silicon wafer and a hydrophobic group, and an organic solvent including at least an alcoholic solvent are mixed and contained. With this cleaning agent, the cleaning process which tends to induce a pattern collapse can be improved. | 06-26-2014 |
20140174466 | AUTOMATIC SOLAR POWER SURFACE-CLEANER - Various embodiments herein include at least one of systems, methods, and software to facilitate automatic solar power surface-cleaning Such embodiments include at least one automatic solar power surface-cleaning robot that uses no water or external power, continuously cleans the solar power surfaces and requires no maintenance or external power. The solar power surface-cleaning robot is easy to retrofit in an existing solar power generation plant. An automatic solar power surface-cleaner uses high-voltage AC electric fields to sweep particulates and debris as the robot traverses the surface to be cleaned. Photovoltaic solar cells supply the power for the robot. No external power is required. The robot clamps to the surface to be cleaned at the edges using motor driven rollers. Electronics inside the device generate high-voltage AC that is applied to conductors close to the surface to be cleaned. | 06-26-2014 |
20140283873 | Apparatus and Method For Indirect Surface Cleaning - Methods for cleaning a surface of a photomask and for increasing the useable lifetime of the photomask are disclosed. One method includes, a first wafer print processing using a photomask and a pellicle disposed across the photomask, and cleaning the photomask. The cleaning the photomask includes directing a laser beam through the pellicle toward the photomask, the laser beam having a wavelength that is substantially equal to a local maximum of an absorption spectrum of the photomask, heating the photomask with the laser beam, and transferring heat from the photomask to a contaminant disposed on the photomask, thereby thermally decomposing the contaminant. | 09-25-2014 |
20140373869 | METHOD FOR REMOVING SOLDER BALLS FROM CHIP - A method for removing solder balls ( | 12-25-2014 |
20150083160 | ULTRASONIC CLEANING DEVICE - An ultrasonic cleaning device including an ultrasonic transducer ( | 03-26-2015 |
20150128992 | Methods of Removing Particles from Over Semiconductor Substrates - Some embodiments include methods of removing particles from over surfaces of semiconductor substrates. Liquid may be flowed across the surfaces and the particles. While the liquid is flowing, electrophoresis and/or electroosmosis may be utilized to enhance transport of the particles from the surfaces and into the liquid. In some embodiments, temperature, pH and/or ionic strength within the liquid may be altered to assist in the removal of the particles from over the surfaces of the substrates. | 05-14-2015 |
20150294856 | Methods and Apparatus for Cleaning Semiconductor Wafers - An apparatus for cleaning a surface of wafer or substrate includes a plate being positioned with a gap to surface of the wafer or substrate, and the plate being rotated around an axis vertical to surface of wafer or substrate. The rotating plate surface facing surface of the wafer or substrate has grooves, regular patterns, and irregular patterns to enhance the cleaning efficiency. Another embodiment further includes an ultra sonic or mega sonic transducer vibrating the rotating plate during cleaning process. | 10-15-2015 |
20150303053 | METHOD FOR PRODUCING OZONE GAS-DISSOLVED WATER AND METHOD FOR CLEANING ELECTRONIC MATERIAL - A method for producing ozone gas-dissolved water includes a process in which a mixed gas of an ozone gas and an oxygen gas and degassed water are supplied to an ozone-dissolving section and the mixed gas is dissolved in the degassed water. The amount of the mixed gas supplied to the ozone-dissolving section is controlled such that the sum of the dissolved oxygen gas concentration of the degassed water and the increment of the dissolved oxygen gas concentration calculated from the amount of the oxygen gas in the mixed gas and the amount of the degassed water on the assumption that ozone in the mixed gas entirely decomposes into oxygen is less than or equal to the saturated solubility of the oxygen gas under conditions using the obtained ozone gas-dissolved water. | 10-22-2015 |
20160064242 | METHOD AND APPARATUS FOR PROCESSING WAFER-SHAPED ARTICLES - A device for processing wafer-shaped articles comprises a closed process chamber that provides a gas-tight enclosure. A rotary chuck is located within the closed process chamber. A heater is positioned relative to the chuck so as to heat a wafer shaped article held on the chuck from one side only and without contacting the wafer shaped article. The heater emits radiation having a maximum intensity in a wavelength range from 390 nm to 550 nm. At least one first liquid dispenser is positioned relative to the chuck so as to dispense a process liquid onto a side of a wafer shaped article that is opposite the side of the wafer-shaped article facing the heater. | 03-03-2016 |
20160079055 | SAMPLE CLEANING APPARATUS AND SAMPLE CLEANING METHOD - A sample cleaning apparatus includes a vibrating unit which ultrasonically vibrates a sample while the sample is mounted and held on a sample stage arranged in a processing chamber, the vibrating unit including: a dielectric film which is arranged on the sample stage and above which the sample is mounted; electrodes which are arranged adjacent to each other in the dielectric film; and a radio frequency power supply which supplies radio frequency power at frequencies in a prescribed range to the electrodes while the sample is hold on the sample stage; and a gas supply unit which forms a gas flow in a direction along a surface of the sample, so that particles are expelled. | 03-17-2016 |
20160197000 | SINGLE-WAFER-TYPE CLEANING APPARATUS | 07-07-2016 |
20160254170 | METHOD AND SYSTEM FOR CLEANING WAFER AND SCRUBBER | 09-01-2016 |
20180021821 | UNIFORM FLUID MANIFOLD FOR ACOUSTIC TRANSDUCER | 01-25-2018 |
20190148137 | METHOD FOR PROCESSING SUBSTRATE | 05-16-2019 |
20190148179 | SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD AND RECORDING MEDIUM | 05-16-2019 |