Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Absorber having extended surface

Subclass of:

126 - Stoves and furnaces

126569000 - SOLAR HEAT COLLECTOR

126634000 - With means to convey fluent medium through collector

126651000 - Conduit absorber structure

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
126674000 Absorber having extended surface 19
20100175688A LIGHT ABSORBER DEVICE - The present invention relates to a light absorbing device which comprises an transparent outer material layer, a space through which air is circulated and heated by light radiation passing through the outer the material layer, a radiation absorbing material layer, and an element which is adapted to divide the space in at least a first subspace, which comprises a first opening, and a second subspace, which comprises a second opening. The air is adapted to flow along a path having an extension from the first opening to the second opening. The path comprises flow resistance reducing means in at least one portion of the space which is adapted to reduce the flow resistance for the gaseous medium when it is guided through said portion of the space.07-15-2010
20110048410ABSORBER FOR A THERMAL SOLAR PANEL - The invention relates to an absorber (03-03-2011
20110308514METHOD FOR MANUFACTURING A SOLAR RADIATION ABSORBER - A method for manufacturing a solar absorber element forming a solar absorber of a solar receiver including providing a substrate, placing at least one projection within the substrate, and attaching the projection to the substrate with an attachment functionality operative to attach the projection to the substrate, thus defining the solar absorber element, the solar absorber being configured to allow a fluid to flow therein and be heated by solar radiation penetrating the projection of the solar absorber element.12-22-2011
20120006319SOLAR COLLECTOR AND METHOD FOR MANUFACTURING SUCH A SOLAR COLLECTOR - A solar collector (01-12-2012
20120012102SOLAR POWER CONCENTRATING SYSTEM - An outer side of a receiver is covered with a housing, so that the receiver is not exposed to the open air and no heat of the receiver is taken by winds, to improve thermal efficiency. Although the outer side of the receiver is covered with the housing, a lower side thereof has an opening, so that sunlight reflected by heliostats is introduced through the opening to the inside of the receiver and is surely received by an inner face of the receiver.01-19-2012
20120160233SOLAR ENERGY ABSORBER UNIT AND SOLAR ENERGY DEVICE CONTAINING SAME - The invention relates to a solar energy absorber unit for a solar energy device, and methods of producing the same. The unit includes a collector plate having a front surface adapted to absorb solar energy and a rear surface. A rear panel has an inner surface attached to areas of the rear surface of the collector plate via a fluid-tight bond but leaving a fluid-conveying channel between the areas of the rear surface of the plate where the panel is attached. The collector plate and preferably the rear panel are each made of a core layer of an aluminum alloy provided with a cladding layer formed on a side of the core layer that confronts the fluid-conveying channel, the cladding layer being made of aluminum or an aluminum alloy having a total content of alloying elements and impurities, if any, of no more than 0.5 wt. %.06-28-2012
20120186578VACUUM SOLAR THERMAL PANEL WITH PIPE HOUSING - The present application relates to a vacuum solar thermal panel with pipe housing (07-26-2012
20130008433SOLAR HEAT COLLECTING DEVICE - A solar heat collecting device of the flat panel type, a process for its manufacture and parts thereof, made of extruded profiles in particular of aluminium or aluminium alloys. The device comprises a casing accommodating a heat collector assembly comprising a plurality of elongate extruded heat collector bodies, side by side, each having a tube co-axial with its axis of extrusion, flanked on each of its opposite sides integrally by an extruded web and further comprising a manifold at each end to which the respective tube ends are sealingly and communicatingly brazed. The edges of the adjoining webs of adjoining elongate bodies overlap slightly but are movable free of mechanical constraint or mutual attachment in relation to one another. Together the elongate bodies present the incoming solar radiation with a substantially plane uninterrupted area for absorption.01-10-2013
20130228167Solar Water Heating Systems and Methods of Making and Using the Same - Described herein are embodiments of solar heating systems, including solar collection panels used in the solar heating systems, and methods for manufacturing solar collection panels suitable for use in the solar collection panels. The solar heating system is a closed direct connected solar heating system that need not include heat exchangers or drain back systems. The solar collection panels include a series of interconnected pockets between two sheets of material and inlet and outlet fittings for providing fluid into and out of the solar collection panel. The system described herein is capable of operating under pressures of 160 psi or higher and can also tolerate extreme temperature conditions, such as freezing temperature conditions.09-05-2013
20130233304Design of Integrated Heat Exchanger into Solar Absorber for Affordable Small-scale Concentrated Solar Power Generation (SCU) - A solar absorber for a concentrated solar power (CSP) dish system includes a cylindrically shaped blackbody cavity receiver fused to a cylindrically shaped heat exchanger shell covering the receiver to form a monolithic cavity receiver and heat exchanger. An exterior surface of the cavity receiver has grooves embedded to create a duct spiraling about the exterior of the cavity receiver so that the duct forms tubes of a tube-style heat exchanger when covered by the heat exchanger shell. An interior diameter of the cavity receiver is greater than or equal to a diameter of an aperture of the cavity receiver, and a longitudinal interior depth of the cavity is greater than or equal to twice the interior diameter of the cavity receiver. The monolithic solar absorber is preferably composed of a ceramic material such as silicon carbide having emissivity greater than 0.9.09-12-2013
20130306059Dish-Type Solar Thermal Power Generation System And Heat Collector Thereof - A heat collector of a dish-type solar thermal power generation system and the solar thermal power generation system having the heat collector. The heat collector of the dish-type solar thermal power generation system comprises a heat collecting cavity and at least one layer of heat absorbing coil. The heat collecting cavity is provided with an opening. The heat absorbing coil forms a cavity structure. The cavity structure is provided with a hole. The cavity structure is arranged within the heat collecting cavity. The hole and the opening are aligned. A low temperature inlet of the heat absorbing coil is arranged on the cavity structure at a location where incident light energy distribution density is at maximum. The heat collector is capable of preventing ablation of the heat absorbing coil due to localized overheating and burning of the heat collector due to abrupt drop in convective heat transfer coefficient caused by phase transition of working fluid.11-21-2013
20140060518Solar Absorber for Concentrated Solar Power Generation - A solar absorber for a concentrated solar power (CSP) system includes a cylindrically shaped blackbody cavity receiver fused to a cylindrically shaped heat exchanger shell covering the receiver to form a monolithic cavity receiver and heat exchanger. An exterior surface of the cavity receiver has grooves embedded to create a duct spiraling about the exterior of the cavity receiver so that the duct forms tubes of a tube-style heat exchanger when covered by the heat exchanger shell. An interior diameter of the cavity receiver is greater than or equal to a diameter of an aperture of the cavity receiver, and a longitudinal interior depth of the cavity is greater than or equal to twice the interior diameter of the cavity receiver. The monolithic solar absorber is preferably composed of a ceramic material such as silicon carbide having emissivity greater than 0.9.03-06-2014
20140165996Solar Heat Collector - Solar heat collector with a pipe in which flows an energetic fluid and a structure consisting of a frame of plastic material with metallic profiles encapsulated during the injection of said plastic material, which allows establishing orifices therein, providing a robust and lightweight collector with few components and dimensionally stable.06-19-2014
20140246011Solar Heat Exchange Panel - A solar heat exchange panel that includes a lower plate and an upper plate that together define an interior volume containing a flowing heat transfer fluid. The upper plate includes a plurality of upward extensions and downward extensions that cover the top surface of the solar heat transfer panel and are configured to capture solar radiant energy. The lower plate plate includes a plurality of upwardly extending hollow lower plate extensions. The lower plate extensions are aligned with the bottom portions of each upward extension of the upper plate and almost touching. Each of the downward extensions form the upper plate extend down and are joined to the base of the lower plate. In operation, a heat transfer fluid introduced into an inlet on one end of the solar heat transfer panel passes through the defined interior volume and is intimately contacted with the solar heated surfaces extending down into the solar heat transfer panel from the upper plate. A substantially infrared transparent plate across the top surface of the solar heat transfer panel creates a top interior space that encloses a path of flowing air which is simultaneously heated along with the enclosed heat transfer fluid in the lower interior space.09-04-2014
126675000 Corrugated surface 5
20100000520PERFORATED TRANSPARENT GLAZING FOR HEAT RECOVERY AND SOLAR AIR HEATING - A heat collector comprises a transparent glazing exposed to the ambient. The transparent glazing is spaced from a back surface to define a plenum therewith. A plurality of perforations is defined through the transparent glazing for allowing outside air to flow through the transparent glazing into the plenum and substantially maintain the transparent glazing at the ambient temperature, thereby providing for higher thermal efficiency.01-07-2010
20100242951APPARATUS FOR INHIBITING PRESSURE FLUCTUATIONS AND MOISTURE CONTAMINATION WITHIN SOLAR COLLECTORS AND MULTI-GLAZED WINDOWS - A solar collector or multi-glazed window includes a desiccant-filled vent which reduces chamber pressure fluctuations, thereby minimizing failure of seals, while inhibiting contamination by moisture. Excess pressure due to solar-heated gas is vented from the chamber, and insufficient pressure due to cooled gas is relieved by additional gas entering the chamber after being dried by the desiccant. Expandable chamber seals can further mitigate pressure fluctuations by enabling chamber dimensions to vary as the gas temperature changes. When the sun warms the desiccant, absorbed moisture is carried away by venting, solar-heated gas. A purging system can fill and purge the chamber, and a dry gas source can provide input gas at a slightly elevated pressure. A pressurized, gas-maintenance system can maintain a constant overpressure in a plurality of chambers. Solar absorbers can be formed by one or two corrugated sheets having fluid tubes installed in channels formed therein or therebetween.09-30-2010
20110277750Solar Heat Collector Module - A solar cell collector unit that materially contributes to a more efficient use and conservation of green energy includes a first metal sheet having alternating corrugated crest and valley portions on an upper surface and alternating open channels on an under surface and having a first dimension with a first peripheral edge about its entire perimeter. A second substantially flat metal sheet having a second dimension with a second peripheral edge about its entire perimeter and less than the first dimension. The first and second metal sheets overlie one another with flattened copper tubing disposed within the open channels and sandwiched there between, while crimping and folding the first peripheral edge over the second peripheral edge to form nested protuberances about its perimeter to provide stiffness and rigidity there about and forming a low cost single solar cell unit. Then deformation along the valley portions and a portion of the second metal sheet forms plural pin-less rivets thereon to provide additional stiffness and rigidity.11-17-2011
20120260909TEXTURED MODULAR SOLAR SURFACE RECEPTOR OPERATING AT A HIGH TEMPERATURE - The present invention relates to a solar surface receptor module that operates at a high temperature and comprises a channel (10-18-2012
20130220310SOLAR THERMAL RECEIVER WITH CONCENTRIC TUBE MODULES - A solar thermal receiver with concentric tube modules is disclosed. The outer two tubes (08-29-2013

Patent applications in class Absorber having extended surface

Patent applications in all subclasses Absorber having extended surface

Website © 2025 Advameg, Inc.