Class / Patent application number | Description | Number of patent applications / Date published |
123568260 | Having electromechanical actuator control of EGR valve | 8 |
20090293851 | Method and apparatus for controlling an internal combustion engine - A method and apparatus for controlling an internal combustion engine having a first actuator for influencing the gas air mass flow delivered to the internal combustion engine, having a second actuator for influencing the high-pressure-side recirculated exhaust gas mass flow, and having at least one third actuator for influencing the low-pressure-side recirculated exhaust gas mass flow, a first actuating variable for the first actuator being predefinable based on a comparison between a first setpoint and a first actual value for the fresh air mass flow and/or on further modeled or measured variables, a second actuating variable for the second actuator being predefinable based on a comparison between a second setpoint and a second actual value for the high-pressure-side exhaust gas mass flow and/or on further modeled or measured variables, and at least one third actuating variable for the at least one third actuator being predefinable based on a comparison between a third setpoint and a third actual value for the low-pressure-side exhaust gas mass flow and/or on further modeled or measured variables. | 12-03-2009 |
20110197863 | EXHAUST GAS RECIRCULATION VALVE IN VEHICLE - An exhaust gas recirculation valve in a vehicle has two valves that are controlled individually by using one driving source. The exhaust gas recirculation valve enables secure operation of a vehicle even if the driving source is out of order. The exhaust gas recirculation EGR valve includes a driving unit having a driving motor for rotating a motor shaft and an interlocking unit for receiving rotational force from the motor shaft. A rod portion moves upon reception of the rotational force. A valve unit at an end portion of the rod portion controls a flow rate of the exhaust gas. A valve housing is coupled to the driving unit as one unit and has an EGR port and a bypass port. The interlocking unit includes a valve return member for rotating the motor shaft forcibly to make the valve unit to move to an initial position. | 08-18-2011 |
20110232615 | SYSTEM AND APPARATUS FOR CONTROLLING REVERSE FLOW IN A FLUID CONDUIT - A system includes an internal combustion engine receiving intake air from an intake manifold and providing exhaust gases to an exhaust manifold. The system further includes an exhaust gas recirculation (EGR) conduit fluidly coupling the exhaust manifold to the intake manifold. The system includes a conical spring check valve disposed in the EGR conduit, the conical spring check valve having a helically wound spring including a number of turns of decreasing diameter, where each turn progresses axially in a normal flow direction of the EGR from a previous one of the turns. Each of the turns further overlaps a previous one of the turns. | 09-29-2011 |
20130192569 | OXYGEN CONCENTRATION SETPOINT MODIFICATION - A method of controlling exhaust gas recirculation in an engine is provided. An amount of oxygen in an exhaust of an engine is measured. A desired intake manifold oxygen concentration is obtained. An exhaust gas recirculation rate to provide the desired intake manifold oxygen concentration is calculated based on the measured amount of oxygen in the exhaust. An exhaust gas recirculation valve is set based on the calculated exhaust gas recirculation rate. | 08-01-2013 |
20140034029 | VALVE APPARATUS - A valve apparatus performs at least one of a first operation in which an electric motor is energized in a valve-close direction and a rotation shaft is rotated until its rotation is stopped and a second operation in which the electric motor is deenergized and a valve is fully closed by a biasing force of a return spring. Thereby, a rotation angle of the rotation shaft becomes a rotation-stop angle or the rotation angle becomes in the backlash range, so that a biasing force of the return spring is not transmitted to the rotation shaft. Then, the electric motor generates a specified torque, which is less than a valve-opening torque by which the valve starts opening. Thereby, a rotation angle of the rotation shaft can be stopped at a full-close angle. The full-close angle can be made correspond to an output of a rotational angle sensor. | 02-06-2014 |
20140261344 | INTERNAL COMBUSTION ENGINE CONTROL APPARATUS - There is provided an internal combustion engine control apparatus having an exhaust gas recirculation amount estimation unit that learns the relationship between an exhaust gas recirculation valve opening area calculated by an exhaust gas recirculation valve opening area calculation unit and an opening degree of the exhaust gas recirculation valve and estimates an recirculation amount of exhaust gas utilized in controlling an internal combustion engine, based on the relationship between the exhaust gas recirculation valve opening area and the opening degree of the exhaust gas recirculation valve. | 09-18-2014 |
20140311467 | CONTROL VALVE FOR AN INTERNAL COMBUSTION ENGINE EXHAUST GAS RECIRCULATION SYSTEM - The invention relates to a valve ( | 10-23-2014 |
20150068504 | CONTROL DEVICE FOR EXHAUST GAS RECIRCULATION VALVE - An EGR valve includes a valve housing having a gas passage and a motor housing containing a motor. The valve housing and the motor housing are made of different materials. The valve housing is provided with a valve seat, a valve element, and a valve shaft. The motor includes a stator having a coil and a rotor having an output shaft. The output shaft is rotated together with the rotor, thereby making stroke movement of the valve shaft in an axial direction to change an opening degree of the valve element with respect to the valve seat. An ECU for controlling the EGR valve determines a target opening degree of the EGR valve, uses the coil as a temperature sensor to detect the temperature of the motor, compensates a target opening degree based on the detected temperature, and controls the motor based on the compensated target opening degree. | 03-12-2015 |