Class / Patent application number | Description | Number of patent applications / Date published |
123490000 | Injector solenoid drive | 48 |
20080289607 | Internal Combustion Engine Controller - An internal combustion engine controller has: a voltage booster circuit for boosting a battery power source; a booster side driver element for flowing a current through the injectors by using the boosted voltage; a battery side driver element disposed in parallel with the booster side driver element to flow a current through the injectors by using the battery power source; a first downstream side driver element provided by controlling currents flowing through the injectors; current regeneration diodes for flowing currents from the downstream side to the upstream side of the injectors; a booster side current detector resistor for detecting currents flowing via the current regeneration diodes; and an injector control circuit for controlling and driving the booster side driver element, battery side driver element and first downstream side driver element. | 11-27-2008 |
20080289608 | FUEL INJECTOR CONTROL APPARATUS - A microcomputer calculates a fuel injection time. When the fuel injection time is longer than a predetermined specified time, the microcomputer sets a voltage level of a short-term injection signal to high and sets a peak current for coils in fuel injectors to a first peak current. When the fuel injection time is shorter than or equal to the predetermined specified time, the microcomputer sets a voltage level of the short-term injection signal to low and sets a peak current for the coils to a second peak current smaller than the first peak current. | 11-27-2008 |
20080308070 | Electrical drive arrangement for a fuel injection system - An electrical drive arrangement of a fuel injection system comprising a power supply operatively connected to an injector driver stage which, in turn, is operatively connected to at least one fuel injector. The electrical drive arrangement includes a voltage regulation device operatively connected between the power supply and the injector driver stage, wherein the voltage regulation device is arranged to regulate the voltage supply from the power supply to the injector driver stage. | 12-18-2008 |
20090107469 | CONTROL UNIT FOR INTERNAL COMBUSTION ENGINE - There is proposed a control unit for an internal combustion engine, which comprises a boost circuit, a switching element, a current detecting resistor and a controller and is designed to be actuated such that the boost circuit is used to boost a power source voltage to create a boosted voltage and the controller is used to control the switching element so as to enable the boosted voltage to flow to the injector solenoid coil. This control unit is designed such that, when the boost circuit goes out of order, the injector solenoid coil is excited by making use of the power source voltage without using the boosted voltage and without creating a peak current to thereby generate a first holding current required for opening the injector and a second holding current required for retaining the opened state of the injector, the second holding current being lower in intensity than the first holding current. | 04-30-2009 |
20090126692 | Device for Switching Inductive Fuel Injection Valves - Disclosed are a method and a device for more rapidly switching inductive fuel injection valves. According to the invention, the magnetic retaining forces generated by remanence in a bistable valve comprising an opening and closing coil or by eddy currents in a standard valve comprising an opening coil and a closing spring are eliminated with the aid of a negative current that flows through the coil in a direction running counter to the direction of the operating current. Additionally, the magnetic yoke and armature that are used are made of materials having different conductivities in order to be able to close the valve even more quickly. | 05-21-2009 |
20090183714 | Internal Combustion Engine Controller - In a voltage boost circuit for driving a fuel injector of an internal combustion engine, a high voltage developed in the voltage boost coil will be discharged into the battery power supply through the boost coil by electrically energizing a discharge switching element provided in parallel to the charging diode. If the overboost compensation overlaps a boost execution period, the end of the boost execution period will await starting of the overboost compensation. | 07-23-2009 |
20090217914 | METHOD FOR DRIVING SOLENOID-ACTUATED FUEL INJECTORS OF INTERNAL COMBUSTION ENGINES - An accurate control of a solenoid-operated fuel injector in a Diesel or gasoline engine specifies that a pull-in voltage (Vpull-in) higher than the generally available battery voltage (Vbatt) is applied to the injector, and that the injection is ended as quickly as possible, in order that the fuel injection closely follows the solenoid current profile. When the initial pull-in voltage is lower than the expected nominal value, a deviation of the injected fuel quantity appears with respect to the nominal quantity. This inconvenience is overcome by monitoring the actual value of a selected parameter, such as the actual value of the initial pull-in voltage (Vpull-in), and the injection start time (te) and the solenoid energizing time (ET) are correspondingly modified. | 09-03-2009 |
20090293846 | A CONTROL SYSTEM OF A FUEL INJECTION APPARATUS OF AN INTERNAL COMBUSTION ENGINE - A control arrangement for a fuel injection apparatus of an internal combustion engine, the fuel injection apparatus comprising at lest two fuel injector nozzles, the injection action of which is controllable via a solenoid, and at least two control units arranged to control the solenoids controlling the injection action. According to the invention, each injector nozzle is provided with a first and second solenoid and the first and second solenoid are in connection with a different control unit. | 12-03-2009 |
20090301442 | FUEL INJECTOR - A fuel injector, in particular for fuel injection systems of internal combustion engines. Such an injector is characterized by a magnetic circuit containing a core, a solenoid, an armature, and a movable valve needle having a valve closing body that cooperates with a fixed valve seat), the valve seat being formed on a valve seat body), and a valve seat carrier into which the valve seat body is introduced. The outer circumference of the valve seat body has a sawtooth-like structure for establishing a fixed connection to the valve seat carrier. The fuel injector is suitable in particular for use in fuel injection systems of mixture-compressing, externally ignited internal combustion engines. | 12-10-2009 |
20100043758 | FUEL INJECTION APPARATUS - Disclosed is a fuel injection apparatus comprising a solenoid coil ( | 02-25-2010 |
20100059023 | Circuit Arrangement and Method for Operating an Inductive Load - A circuit arrangement for operating at least one inductive load, for example a solenoid of a fuel injection valve, is configured to feed back electrical energy into a storage capacitor in a freewheeling phase after driving the load. In order to avoid an unwanted voltage increase on the capacitor, the circuit arrangement includes a DC/DC converter with the output-side storage capacitor to provide an operating voltage for the load. A drivable circuit arrangement optionally connects the load to the capacitor, and a freewheeling diode arrangement feeds back electrical energy into the capacitor after the circuit arrangement has been switched off. A protection circuit, which is connected in parallel with the capacitor, provides a current path for limiting the charging voltage on the capacitor in the event of an excessively high voltage on the capacitor. | 03-11-2010 |
20100065022 | METHOD FOR OPERATING AN INJECTOR - A method is for operating an injector, in particular a fuel injector of an internal combustion engine in a motor vehicle, the injector having a piezoelectric actuator for driving a valve needle coupled, preferably hydraulically, to the actuator. Starting from a starting voltage corresponding to a first operating state of the injector, the actuator is recharged, i.e., charged or discharged, by a predefinable voltage swing to a target voltage corresponding to a second operating state of the injector. | 03-18-2010 |
20100116252 | Method and control unit for operating an injection valve - In a method for operating an injection valve, in particular a fuel injector of an internal combustion engine of a motor vehicle, one component of the injection valve, particularly a valve needle, is disposed in a manner allowing movement relative to other components of the injection valve, and preferably is able to be driven at least partially by an actuator. A structure-borne-noise signal is detected by a structure-borne-noise sensor, and the structure-borne-noise signal is evaluated in order to infer an operating state of the movably disposed component. | 05-13-2010 |
20100122691 | SOLENOID CURRENT CONTROL WITH DIRECT FORWARD PREDICTION AND ITERATIVE BACKWARD STATE ESTIMATION - An engine control system comprises a current control module and a solenoid actuator module. The current control module determines a duty cycle based on a desired current through a solenoid of an engine system and a resistance of the solenoid and corrects the resistance based on an actual current through the solenoid. The solenoid actuator module actuates the solenoid based on the duty cycle. | 05-20-2010 |
20100154750 | Method For Injecting Fuel With The Aid Of A Fuel-Injection System - A fuel injection system ( | 06-24-2010 |
20100242920 | Internal Combustion Engine Controller - There is provided an internal combustion engine controller that realizes a reduction in maximum current value and current regulation without sacrificing boost performance. An internal combustion engine controller | 09-30-2010 |
20100269793 | DIAGNOSTIC SYSTEM FOR SPARK IGNITION DIRECT INJECTION SYSTEM CONTROL CIRCUITS - An engine control system includes a driver module and a diagnostics module. The driver module includes a high-side driver and a low-side driver, which selectively actuate a load. The driver module generates status signals based on detection of each of a plurality of failure modes of the high-side and low-side drivers. The diagnostics module increments a first error count for a first mode of the plurality of failure modes when the status signals indicate the driver module has detected the first mode. The diagnostics module increments a corresponding total count each time the driver module analyzes the first mode. The diagnostics module sets a fail state for a diagnostic trouble code (DTC) when the first error count for the first mode reaches a first predetermined threshold prior to the total count reaching a second predetermined threshold. | 10-28-2010 |
20100300412 | Method for Optimizing Flow Performance of a Direct Injection Fuel Injector - A method for controlling a DI fuel injector relying on measurement of a engine operating parameter, preferably fuel pressure in an associated fuel rail. Regimes of low fuel injector flow require lowered fuel rail pressure, allowing lowered peak and hold currents that afford quicker closing. Under low flow conditions, a prior art fixed peak current exceeds the current required for rapid opening of the fuel injector, and a prior art fixed hold current exceeds the current required for holding the valve open for the full duration of the open window. In the present invention, the peak and hold currents, and optionally peak and hold voltages, are varied as functions of fuel rail pressure, either continuously or stepwise. The result is full function of a fuel injector over the full range of fuel flow requirements while also providing the quickest possible response under all flow conditions. | 12-02-2010 |
20110005498 | HEATED CATALYZED FUEL INJECTOR FOR INJECTION IGNITION ENGINES - The present invention provides an injector-ignition fuel injector for an internal combustion engine, comprising an input fuel metering system for dispensing a next fuel charge into a pressurizing chamber, a pressurization ram system including a pressurization ram for compressing the fuel charge within the pressurizing chamber, wherein the fuel charge is heated in the pressurization chamber in the presence of a catalyst, and an injector nozzle for injecting the heated catalyzed fuel charge into a combustion chamber of the internal combustion engine. | 01-13-2011 |
20110005499 | FUEL INJECTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE, AND ASSOCIATED METHOD - A fuel injection device and associated method are provided. An injector body defines an axial bore and has a nozzle exit extending into the combustion chamber. The injector body receives fuel within the bore and channels the fuel through the nozzle exit into the combustion chamber. A flow rate control member is movably disposed within the injector body bore and is actuatable by a first actuator to move with respect to and to interact with the nozzle exit to control a flow rate of the channeled fuel. A pintle member is movably disposed within a flow rate control member bore and is actuatable by a second actuator, independently of the flow rate control member, to move with respect to the flow rate control member and to interact with the nozzle exit to control a spray angle of the channeled fuel. The flow rate and spray angle are thereby independently controllable. | 01-13-2011 |
20110023836 | SYSTEMS AND METHODS FOR DETECTING FAILED INJECTION EVENTS - A fuel injection system includes an injector control module, a current detection module, and a position determination module. The injector control module controls current through a solenoid of a fuel injector for a predetermined period. The current detection module measures an amount of current through the solenoid after the predetermined period. The position determination module determines whether the fuel injector injected fuel during the predetermined period based on when the amount of current through the solenoid is less than or equal to a predetermined current. | 02-03-2011 |
20110100332 | ELECTROMAGNETICALLY ACTUABLE VALVE - An electromagnetically actuable valve, e.g., a fuel injector for fuel-injection systems of internal combustion engines, includes an electromagnetically actuable actuating element having a solenoid coil, a fixed core, a valve jacket, and a movable armature for actuating a valve-closure element, which cooperates with a valve-seat surface provided on a valve-seat body. A sleeve-shaped guide element is introduced into an inner longitudinal bore of the armature and into an inner flow bore of the internal pole, the guide element being firmly fixed in place in the armature or the inner pole, and loosely guided in the respective other component. | 05-05-2011 |
20110100333 | Control Apparatus for Internal Combustion Engine - A fuel injection control apparatus for an internal combustion engine which can inject a fuel injection quantity to a fuel injector with accuracy even when the fuel injection quantity is reduced than before is provided. A fuel injection control apparatus of a direct cylinder injection type of internal combustion engine, including a fuel injector which performs fuel injection by supplying a drive current to a solenoid, a fuel pressure sensor which detects fuel pressure supplied to the fuel injector, and operation state detecting means which detects the operation state of the internal combustion engine, comprises current profile changing means | 05-05-2011 |
20110220069 | Injector Drive Circuit - The present invention realizes an injector drive circuit capable of providing high output power of a boost convertor while suppressing increases in size and cost thereof. An injector energizing circuit | 09-15-2011 |
20120031378 | METHOD AND DEVICE FOR OPERATING AN INJECTION VALVE - In a method for operating an injection valve having a longitudinal axis, an injection needle, a control valve and an actuator embodied as a solid body actuator, wherein the actuator acts on the control valve and the control valve acts on the injection nozzle, various pre-defined quantities of electrical energy are supplied to the actuator in a plurality of adaptation flows in order to modify an axial length of the actuator. This electrical energy is defined such that an axial position of the injection nozzle remains unchanged. In correlation with the respective adaptation flow, and following the energy supply associated with the respective adaptation flow, a first and second voltage value are detected and a voltage differential value is then determined which is compared with a pre-defined threshold value and, on the basis of the comparison, at least one control of the actuator is adapted to the injection of fluid. | 02-09-2012 |
20120067329 | Efficient Wave Form To Control Fuel System - An efficient control wave form is utilized to actuate the solenoids of a fuel system to reduce boost power/energy consumption. The solenoid is initially energized by applying a boost voltage from an electronic controller across a solenoid coil circuit. The electronic controller monitors the current level in the solenoid coil circuit, and changes to a reduced battery voltage when the current level in the solenoid coil circuit reaches a predetermined trigger current. The controller then maintains a pull-in current based upon battery voltage for a pull-in duration that initiates movement of the solenoid armature from an initial air gap position toward a final air gap position. After the pull-in duration, the current level is dropped to a hold in level for the remaining duration of the actuation event. The solenoid may be used for fuel injector control and/or pump control, such as to control fuel injection and pumping events respectively. | 03-22-2012 |
20120097133 | METHOD AND DEVICE OF OPERATING AN INTERNAL COMBUSTION ENGINE - An internal combustion engine has at least one injection valve for delivering fluid, which has an electromagnetic actuator. A final stage unit is designed for creating a current profile for triggering the electromagnetic actuator with at least one given profile parameter (PP). Upon achieving magnetic saturation of a magnetic circuit of the electromagnetic actuator an assigned saturation current (I_sat_mes) is determined and at least one profile parameter (PP) is adjusted depending on the saturation current (I_sat_mes) thus determined and a given reference saturation current. | 04-26-2012 |
20120216783 | Drive Device for Electromagnetic Fuel Injection Valve - The drive device is configured to, during a time interval between an earlier fuel injection (first fuel injection) and a later fuel injection (second fuel injection), supply an electromagnetic coil with an intermediate current at a voltage with a level of not opening the valve. Further, the drive device sets a voltage application for supplying the intermediate current to initiate before a valve closing in the earlier fuel injection and terminate before half a period of time between a first instant when the valve is closed in the earlier fuel injection and a second instant when a supply of a drive current for opening the valve is initiated in the later fuel injection. | 08-30-2012 |
20120227710 | DEVICE FOR CONTROLLING AN INJECTION VALVE ACTUATOR FOR AN INTERNAL COMBUSTION ENGINE - A device for controlling an injection valve actuator for an internal combustion engine has a voltage source, the voltage of which is high compared to the voltage of a vehicle battery and which is connected to the actuator by way of at least one controllable switch. A switching controller can be connected to the vehicle battery at the input end and it is connected to the voltage source at the output end to generate the high voltage from the voltage of the vehicle battery. The switching controller is designed in such a way that the high voltage of the voltage source is regulated to a higher value as the temperature increases. | 09-13-2012 |
20120234299 | Drive Circuit for Electromagnetic Fuel-Injection Valve - A drive circuit for driving an electromagnetic fuel-injection valve, the drive circuit varying an application sequence of a drive voltage, which is supplied from a step-up power supply to a fuel-injection valve for conducting injection multiple times in a single stroke of an internal-combustion engine, between the first injection and the second and subsequent injections, and setting the application sequence such that the consumption of power from the step-up power supply in the first injection becomes smaller than the power consumption in one of the second and subsequent injections. | 09-20-2012 |
20130104856 | Fuel Injector and Control Method for Internal Combustion Engine | 05-02-2013 |
20140000568 | FUEL INJECTION DEVICE OF DIRECT INJECTION ENGINE | 01-02-2014 |
20140014072 | FUEL INJECTION CONTROL IN AN INTERNAL COMBUSTION ENGINE - A method of controlling fuel injection in an internal combustion engine is presented. For each injector event a drive signal is applied to the fuel injector, wherein said drive signal has a pulse width, which is calculated on the basis of a master performance function and of a minimum delivery pulse corresponding to the minimum pulse width required for the injector to open. | 01-16-2014 |
20140041639 | MAGNETIZED FUEL INJECTOR VALVE AND VALVE SEAT - Systems and methods for a permanently magnetized valve mechanism and/or valve mechanism seat for a fuel injector are disclosed. In one example approach, a fuel injector comprises a valve mechanism and a valve mechanism seat, wherein at least one of the valve mechanism and the valve mechanism seat is permanently magnetized; an injector driver circuit for actuating the valve mechanism; and a spring biasing the valve mechanism in a closed position against the valve mechanism seat. For example, a first amount of current may be supplied in a first direction to the injector driver to lift a permanently magnetized injector valve mechanism from the injector valve mechanism seat, and a second amount of current may be supplied in a second direction to the injector driver to close the permanently magnetized injector valve mechanism onto the injector valve mechanism seat. | 02-13-2014 |
20140123960 | FUEL INJECTION CONTROLLER AND FUEL INJECTION SYSTEM - A fuel injection controller is applied to a fuel injector injecting fuel to be combusted in an internal combustion engine by an open-valve operation of the valve body according to an electromagnetic suction force generated by an energization of a coil. The fuel injection controller controls an injection state of the fuel injector by controlling a coil current flowing through the coil. The fuel injection controller includes an increasing control portion which increases the coil current to a first target value, a holding control portion which holds the coil current increased by the increasing control portion to the first target value, and a changing portion which changes the first target value according to the operation state of the internal combustion engine. | 05-08-2014 |
20140283793 | METHOD AND DEVICE FOR CONTROLLING AN INJECTION VALVE - An activation signal for activating a solenoid valve, in particular, a fuel injector of an internal combustion engine, has a pickup phase and a holding phase. The pickup phase has a comparatively high current and a maximally permissible duration, and the holding phase has a comparatively low current and a minimally permissible duration (MHD). The minimally permissible duration (MHD) of the holding phase is at least periodically dependent on a nominal total duration (GAD) of the activation signal. | 09-25-2014 |
20150034053 | FUEL INJECTOR AND METHOD FOR FORMING SPRAY-DISCHARGE ORIFICES - A fuel injector for fuel injection systems of internal combustion engines has an energizable actuator for actuating a valve-closure member, which, together with a valve seat face configured on a valve seat body, forms a sealing seat. Downstream of the valve seat face, a plurality of spray-discharge orifices are formed, which include one upstream, first spray-discharge orifice section and one downstream, second spray-discharge orifice section having different orifice widths. The orifice sections of the individual spray-discharge orifices extend coaxially to the particular longitudinal bore axis. The spray-discharge orifices are formed in a valve component manufactured as a metal injection molding part. | 02-05-2015 |
20150040871 | PINTLE VELOCITY DETERMINATION IN A SOLENOID FUEL INJECTOR AND CONTROL METHOD - A method is provided for determining the velocity of a pintle assembly in a solenoid fuel injector during a closing stroke of the pintle assembly, such that a braking step is performed during the closing stroke, which includes operating an injector driver with a current regulator to establish a braking current in the solenoid coil. The velocity of the pintle assembly is derived from the duty-cycle of the current regulator during the braking step. A method of operating a solenoid fuel injector, in particular for gaseous fuel, using the so-determined pintle velocity is also provided. | 02-12-2015 |
20150114357 | FUEL INJECTION CONTROL DEVICE AND FUEL INJECTION CONTROL METHOD - A CNG control ECU | 04-30-2015 |
20150128913 | METHOD OF CONTROLLING A SOLENOID VALVE - A method of controlling a solenoid valve of an automotive system, the valve being charged by a pulse width modulated signal (PWM) and determining an actuation of an automotive system component is provided. The method comprises the following: determining a target end of command of the valve as a function of a PWM state and a time interval from a last change of PWM state; monitoring a current value, a PWM phase period and the PWM state of a last pulse width modulated signal; and correcting in the next pulse width modulated signal at least one of said current value and PWM phase period, so that a next end of command of the valve will occur at the target end of command. | 05-14-2015 |
20150128914 | FUEL INJECTION DEVICE - A fuel injection device comprising electricity-generating means generating electricity by rotation of an engine and outputting a predetermined signal, and a solenoid valve injecting fuel; the valve being opened as a result of a drive current applied to a coil, and the fuel being injected into an intake passage of the engine at a predetermined timing during the rotation of the engine; to ensure that the flow rate required during high-speed operation ca be adequately provided in a fuel injection device for injecting/supplying fuel to an engine. The electricity-generating means is an alternating current generation means attached to the engine in a crank angle position at which an output is generated in synchronization with the intake timing of the engine; the signal is an injection command signal applied to the solenoid valve as an alternating-current drive current; and the applied voltage increases with increased engine speed. | 05-14-2015 |
20150144109 | Control Device for Internal Combustion Engine - A control device for an internal combustion engine is provided which can stabilize behavior when a fuel injection valve is opened, and reduce a variation in the amount of fuel injection of the fuel injection valve. A control device ( | 05-28-2015 |
20150292456 | ACTUATOR - The invention relates to an actuator ( | 10-15-2015 |
20150361918 | DEVICE FOR CONTROLLING A FUEL INJECTOR - A device for controlling a fuel injector driving is disclosed, which relates to a technology for enabling a drive semiconductor to actively control a drive current in response to a load condition of an output terminal of an injector when an injector for fuel injection is driven. The device for controlling a fuel injector includes: a micro control unit (MCU) configured to generate a drive signal for controlling a fuel injector operation; a drive semiconductor configured to sense a current flowing in the fuel injector, to measure a time period at which the sensed current arrives at a target current value, and to change a drive current setting value of a current driver in response to a result of a comparison between the measured time period and a predetermined time period; and an injector driver configured to operate the fuel injector in response to an output current of the current driver. | 12-17-2015 |
20160076498 | Electromagnetic Valve Control Unit and Internal Combustion Engine Control Device Using Same - Provided are an electromagnetic valve control unit and a fuel injection control device using the same that can precisely detect a change of an operating state of an electromagnetic valve, that is, a valve opening time or a valve closing time of the electromagnetic valve, precisely correct a drive voltage or a drive current applied to the electromagnetic valve, and appropriately control opening/closing of the electromagnetic valve, with a simple configuration. In an electromagnetic valve control unit for controlling opening/closing of an electromagnetic valve by a drive voltage and a drive current to be applied, the drive voltage and the drive current applied to the electromagnetic valve are corrected on the basis of a detection time of an inflection point from time series data of the drive voltage and the drive current when the electromagnetic valve is opened/closed. | 03-17-2016 |
20160108847 | CONTROL APPARATUS FOR FUEL INJECTION VALVE AND MEHOD THEREOF - An electronic control unit that calculates an injection standby period, which is a period from an energization start point of the solenoid to a point at which the fuel injection valve opens, and adjusts an energization period of the solenoid in accordance with the calculated injection standby period. The electronic control unit of the control apparatus for a fuel injection valve then measures a reference fall detection period, which is a period from the energization start point to a reference fall detection point, and sets the injection standby period to be longer as the reference fall detection period is longer. Here, the reference fall detection point is a point at which the excitation current detected by the current detection circuit falls below a reference current value, which is smaller than a peak current value, while the excitation current decreases after reaching the peak current value. | 04-21-2016 |
20160177855 | Drive Device for Fuel Injection Device, and Fuel Injection System | 06-23-2016 |
20170234259 | FUEL INJECTION DEVICE | 08-17-2017 |