Class / Patent application number | Description | Number of patent applications / Date published |
123481000 | Engine cylinder cutout | 16 |
20080257311 | METHOD AND SYSTEM FOR STARTING OR RESTARTING AN INTERNAL COMBUSTION ENGINE VIA SELECTIVE COMBUSTION - A selective combustion starting system and method selectively provides a proper amount of fuel to one or more combustion chambers in an internal combustion engine. The particular combustion chambers selected depend upon the state of the piston of the combustion chamber and the volume of the combustion chamber, which is dependent upon the position of the piston. Once proper amounts of fuel have been provided to the one or more combustion chambers, the resulting fuel air mixture in the combustion chambers is ignited and combusts to rotate the crankshaft of the engine to commence normal operation of the engine. | 10-23-2008 |
20090013969 | Cylinder Charge Temperature Control for an Internal Combustion Engine - A method of operating an engine is provided. The engine includes at least one cylinder communicating with an intake manifold via an intake manifold valve and an exhaust manifold via an exhaust manifold valve, the cylinder including a piston arranged within the cylinder, wherein the piston is coupled to a crankshaft of the engine. The method comprises discontinuing combustion in the cylinder during a plurality of cycles of the engine; during the plurality of cycles, operating the exhaust manifold valve and the intake manifold valve to provide a net flow of gases from the exhaust manifold to the intake manifold via the cylinder and adjusting a torque signature provided to the crankshaft during each cycle by the piston responsive to an operating condition. | 01-15-2009 |
20100050993 | Dynamic Cylinder Deactivation with Residual Heat Recovery - Cylinder deactivation is a proven solution to improve engine fuel efficiency. The present invention is related to Dynamic Cylinder Deactivation (DCD) solution to conventional internal combustion engine. DCD is an energy saving method based on engine thermodynamics and residual heat recovery. It deactivates all the cylinders within the engine alternatively and dynamically, totally different from traditional sealed-valves cylinder deactivation solutions. DCD has many advantages over traditional sealed-valves cylinder deactivation. Thermodynamic efficiency gain, residual heat recovery, high Lambda and “Air-Hybrid” are the most attractive features of DCD. DCD also makes engine displacement variable. | 03-04-2010 |
20110030657 | SKIP FIRE ENGINE CONTROL - A variety of methods and arrangements for controlling the operation of an internal combustion engine in a skip fire variable displacement mode are described. Generally, an engine is controlled to operate in a skip fire variable displacement mode. In the variable displacement mode, selected combustion events are skipped so that other working cycles can operate at better thermodynamic efficiency. More specifically, selected “skipped” working cycles are not fired while other “active” working cycles are fired. Typically, fuel is not delivered to the working chambers during skipped working cycles. In one aspect of the invention, a firing pattern is determined that is not fixed but the active working cycles are selected to favor the firing of working chambers that have recently been fired at least in part to reduce wall wetting losses. In another aspect of the invention, when an active working cycle follows a skipped working cycle in the same working chamber, the quanta of fuel injected for delivery to the working chamber is increased relative to the quanta of fuel that would be delivered to the working chamber when the active working cycle follows another active working cycle in the same working chamber in order to compensate for wall wetting losses that occur during skipped working cycles. | 02-10-2011 |
20110088661 | COLD START SYSTEMS AND METHODS - A cylinder deactivation system comprises a fuel injection module and a cold start control module. The fuel injection module injects a desired amount of fuel into a cylinder of an engine during engine cranking. The cold start control module maintains an intake valve and an exhaust valve associated with the cylinder in respective closed positions while the desired amount of fuel is injected when at least one of an air temperature and a coolant temperature is less than a predetermined cold start temperature. | 04-21-2011 |
20110220068 | FUEL MANAGEMENT SYSTEMS AND METHODS FOR VARIABLE DISPLACEMENT ENGINES - A control system includes an engine mode transition module that initiates a deactivated mode to deactivate at least one cylinder. A scheduling module schedules a command to disable a spark plug at least one engine cycle after a command to disable a fuel injector for the at least one cylinder. | 09-15-2011 |
20130008412 | CONTROL APPARATUS FOR INTERNAL COMBUSTION ENGINE AND CONTROL APPARATUS FOR VEHICLE EQUIPPED WITH INTERNAL COMBUSTION ENGINE - Provided is a control apparatus for an internal combustion engine that can suppress blowback of in-cylinder residual gas to an intake passage when reverting from a fuel-cut operation accompanied by valve stopping control of an intake valve while suppressing an oil ascent during execution of the fuel-cut operation, and a control apparatus for a vehicle equipped with the internal combustion engine. When executing a fuel-cut operation accompanied by intake valve stopping control, advancement control of the opening/closing timing of an exhaust valve ( | 01-10-2013 |
20130037005 | INTERNAL COMBUSTION ENGINE HAIVNG CYLINDER DEACTIVATION - An internal combustion engine ( | 02-14-2013 |
20130306037 | DEVICE FOR CONTROLLING A HEAT ENGINE - The invention relates to a device for controlling a heat engine, comprising a plurality of cylinders ( | 11-21-2013 |
20140251282 | MANIFOLD PRESSURE AND AIR CHARGE MODEL - In one aspect, an engine controller for an engine including multiple working chambers is described. The engine controller includes a mass air charge determining unit that estimates a mass air charge or amount of air to be delivered to a working chamber. Firing decisions made for a firing window of one or more firing opportunities are used to help determine the mass air charge. The engine controller also includes a firing controller, which is arranged to direct firings to deliver a desired output. Fuel is delivered to a working chamber based on the estimated mass air charge. | 09-11-2014 |
20150322869 | INTERNAL COMBUSTION ENGINE USING VARIABLE VALVE LIFT AND SKIP FIRE CONTROL - An internal combustion engine capable of cylinder deactivation or skip fire control in combination with variable valve lift control. One bank of cylinders can be deactivated while the air induction of the other bank of cylinders is regulated using variable valve lift control to increase engine efficiency. An internal combustion engine with two cylinder banks, where control of one cylinder bank using skip fire control can be operating at an appropriate firing fraction in combination with variable valve lift control on the other cylinder bank. A single bank of cylinders can be controlled in a skip fire manner in conjunction with variable valve lift control. | 11-12-2015 |
20150354484 | THERMAL MANAGEMENT CONTROL USING LIMITED BANK OPERATION - Disclosed herein is an apparatus for managing combustion in an internal combustion engine that includes an operating condition module configured to determine an operating load of an internal combustion engine. The internal combustion engine can includes multiple banks of cylinders. The apparatus further includes a cylinder bank control module configured to select at least one bank of cylinders of the multiple banks of cylinders to be operational based on the determined operating load of the engine. The apparatus also includes a cylinder bank command module configured to generate a cylinder bank command based on a cylinder bank control instruction received from the cylinder bank control module, the cylinder bank control instruction comprising the selection of the at least one operational bank of cylinders. | 12-10-2015 |
20160003169 | SYSTEM AND METHOD FOR SELECTIVE CYLINDER DEACTIVATION - Embodiments for operating an engine with skip fire are provided. In one example, a method comprises during a skip fire mode or during a skip fire mode transition, port injecting a first fuel quantity to a cylinder of an engine, the first fuel quantity based on a first, predicted air charge amount for the cylinder and lean of a desired air-fuel ratio, and direct injecting a second fuel quantity to the cylinder, the second fuel quantity based on the first fuel quantity and a second, calculated air charge amount for the cylinder. | 01-07-2016 |
20160017824 | Skip-Fire Fuel Injection System and Method - A cycle-by-cycle skip-fire fuel-injection technique for pilot-ignited engines involve skip-firing selected combustion chambers when a low load condition is determined and modulating the fuel delivery to maintain the requisite engine power, while reducing pilot fuel quantity to a predetermined minimum. Overall pilot fuel consumption is thereby reduced. | 01-21-2016 |
20160115884 | METHOD AND SYSTEM FOR ENGINE TEMPERATURE CONTROL - Methods and systems are provided to improve engine temperature control. Cylinders scheduled for deactivation may have their exhaust retained in the cylinder by holding an exhaust valve closed on the preceding firing cycle. In this way soot emissions on reactivation are reduced. | 04-28-2016 |
20160252033 | CYLINDER CUTOUT STRATEGY FOR OPERATION OF ENGINE | 09-01-2016 |