Class / Patent application number | Description | Number of patent applications / Date published |
123406580 | Having engine shaft rotational position signal generator (e.g., crank shaft, cam shaft) | 13 |
20080295803 | Camshaft wheel for determining startup engine angle and machine using same - A machine having an internal combustion engine includes a camshaft wheel rotatably driven by a crankshaft of the engine. The camshaft wheel includes a plurality of circumferentially spaced teeth. A first engine angle indicator is positioned among the circumferentially spaced of the camshaft wheel and is one of a missing tooth and an additional tooth. A second engine angle indicator is positioned among the circumferentially spaced teeth of the camshaft wheel less than about 90 degrees from the first engine angle indicator. The second engine angle indicator is also one of a missing tooth and an additional tooth. A camshaft wheel sensor produces a pulsetrain in response to detection of the plurality of circumferentially spaced teeth and additional teeth. An electronic control module is configured to determine a location of the first engine angle indicator and the second engine angle indicator based on the pulsetrain, and determine a startup engine angle based on a timing separation between features of the pulsetrain. | 12-04-2008 |
20090159045 | SPARK-IGNITION GASOLINE ENGINE - A spark-ignition gasoline engine having at least a spark plug, the engine including an engine body having a geometrical compression ratio set at 14 or more, and an intake valve and an exhaust valve provided, respectively, in intake and exhaust ports connected to each of a plurality of cylinders of the engine body. The intake and exhaust valves are adapted to open and close corresponding respective ones of the intake and exhaust ports. The engine further includes an operation-state detector adapted to detect an operation state of the engine body and a control system adapted, based on detection of the operation-state detector, to perform at least an adjustment control of an ignition timing of the spark plug, the control system being operable, when an engine operation zone is a high-load operation zone including a wide open throttle region within at least a low speed range, to retard the ignition timing to a point within a predetermined stroke range just after a top dead center of a compression stroke. | 06-25-2009 |
20090165747 | Two-Stroke Engine - A two-stroke engine includes an ignition module that receives a detection signal from a magnetic sensor for detecting a permanent magnet and transmits an ignition signal to an ignition plug. The permanent magnet is provided at a single position on a flange that rotates synchronously with the magnetic sensor. The magnetic sensor is attached to one of sensor attachments and provided at two positions adjacent to the engine body. The sensor attachments and are so provided as to correspond to a rotational direction of the engine. With such an arrangement, the permanent magnet is less affected by noise because the permanent magnet is disposed at only one position. By changing a position at which the sensor is attached, the engine having common components is enabled to work in the same manner during both of normal rotation and reverse rotation. | 07-02-2009 |
20090199818 | START-UP CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - In a speed transition period from when an internal combustion engine is started to when an engine speed settles down to a certain speed, a compression top dead center of a cylinder first operating is set as a reference crank angle and compression top dead centers of the cylinders arriving successively after said reference crank angle in the speed transition period are set as judgment use crank angles. Reference crank angle advancing times are detected and stored in advance, wherein the reference crank angle advancing times are crank angle advancing times when a reference fuel is used, and the crank angle advancing times are times required for the crank angle to advance from the reference crank angle to the judgment use crank angles. The actual crank angle advancing times are detected. When an actual crank angle advancing time is shorter than the reference crank angle advancing time, the ignition timing is retarded by an amount corresponding to a difference of the actual crank angle advancing time from the reference crank angle advancing time. When the actual crank angle advancing time is longer than the reference crank angle advancing time, the ignition timing is advanced by an amount corresponding to the difference. | 08-13-2009 |
20100043750 | AIRCRAFT ENGINE CRANKSHAFT POSITION AND ANGULAR VELOCITY DETECTION APPARATUS - A crankshaft detection system includes a pickup element mounted to an end of a crankshaft and disposed within a rear portion of the aircraft engine's crankcase. The crankshaft detection system also includes pickup element sensor secured to a mounting location formed in the rear portion of the aircraft engine's crankcase and disposed in proximity to the pickup element. As the crankshaft rotates the pickup element relative to the pickup element sensor, the pickup element causes the pickup element sensor to generate a signal indicative of the angular velocity and rotational position of the crankshaft. In order to optimize engine performance, in response to the signal, the controller controls a spark event associated with each the cylinder assembly of the engine such that ignition of the fuel and air mixture occurs within each cylinder assembly at a time prior to each piston of each cylinder assembly reaching a top dead center position. | 02-25-2010 |
20100258081 | INTERNAL-COMBUSTION-ENGINE COMBUSTION STATE DETECTING APPARATUS - There is provided a combustion state detecting apparatus capable of detecting combustion-state abnormality in an internal combustion engine. A comparison timing is set to be advanced in terms of the rotation angle of the crankshaft of an internal combustion engine with respect to the ending timing of an electric quantity based on an ion that occurs when ignition is performed normally through a predetermined ignition signal among the plurality of ignition signals; in the case where, as a result of the comparison between the detected ending timing of an electric quantity based on an ion and the comparison timing, the ending timing is advanced in terms of the rotation angle of the crankshaft with respect to the comparison timing, it is determined that the combustion based on ignition through the predetermined ignition signal is abnormal. | 10-14-2010 |
20110108002 | IGNITION MODULE HAVING A BUS LINE - The invention relates to a portable hand-guided work apparatus having an internal combustion engine ( | 05-12-2011 |
20150369204 | MOTORCYCLE ENGINE CONTROL SYSTEM AND METHOD FOR ENABLING THE USE OF TRADITIONAL CRANKSHAFT - An engine ignition control method and system for controlling ignition timing that computes a predicted crankshaft angular velocity based on prior computed and verified crankshaft angular velocity and acceleration and determines a capture window of the next crankshaft position sensor pickup signal for the verification of the predicted crankshaft angular velocity. The ignition control system also utilizes both crankshaft position pickup signals and the intake manifold air pressure measurements for determining the stroke of the combustion cycle in turn providing more accurately timed signals for the fuel injection and ignition systems. During engine starts, the engine ignition control system performs a series of continuous spark-triggering, determines if each spark-triggering being at the correct or incorrect point in the combustion cycle by detecting if there is any engine acceleration and adjusts the generation of the signal for the next spark-triggering accordingly. | 12-24-2015 |
20160131100 | CRANKSHAFT ROTATING ANGLE CONTROLLING SYSTEM FOR CONTROLLING CRANKSHAFT ROTATING ANGLE AND CRANKSHAFT ROTATING ANGLE CONTROLLING METHOD FOR CONTROLLING THE SAME - A crankshaft rotating angle controlling method and a crankshaft rotating angle controlling system are provided. A shut-off signal is obtained, and an engine speed is judged. If the engine speed is lower than a specific value, a generator is set in a driving mode at an ending point of a missing tooth signal in a gear pulse signal, such that the generator in the driving mode drives a crankshaft to exceed a top-dead-center of a cylinder. When the crankshaft arrives at a bottom-dead-center of the cylinder, the generator is set to be in a holding mode of an error phase of a three-phase current. Through the generator in the driving mode, the given error phase of the three-phase current stops the generator immediately and the crankshaft is fixed within an angle range of a default stop position. | 05-12-2016 |
20160153372 | METHOD OF IMPROVING PERFORMANCE OF SYSTEM FOR CONTROLLING INTERMEDIATE LOCK POSITION CONTINUOUSLY VARIABLE VALVE BY COMPENSATING IGNITION TIMING | 06-02-2016 |
123406590 | Speed responsive timing control | 3 |
20090101111 | System and Method to Control Pre-Ignition in an Internal Combustion Engine - An engine system and method are disclosed for controlling pre-ignition of an alcohol fuel. In one embodiment, the fuel injection timing is adjusted to cause the fuel to avoid combustion chamber surfaces. In another embodiment, the fuel injection timing is adjusted to spray the fuel directly onto the piston surface to cool the piston. Also disclosed is a cylinder cleaning cycle in which engine knock is purposely caused for one to hundreds of engine cycles by adjusting the fuel content away from alcohol toward gasoline. Further measures to cause knock which are disclosed: adjusting spark timing, intake boost, exhaust gas fraction in the cylinder, cam timing, and transmission gear ratio. | 04-23-2009 |
123406600 | Having counter or addressable memory (e.g., digital timing circuit) | 2 |
123406610 | Plural engine shaft position sensors | 1 |
20180024156 | Sensor Housing for a Wheel Sensor Device, Wheel Sensor Device and Connecting Component Thereof | 01-25-2018 |
123406640 | Memory addressed by engine speed or load | 1 |
123406650 | With microprocessor | 1 |
20100083936 | Target wheel position detection systems - A control module for a vehicle includes a time recording module that stores timestamps that correspond to each of N teeth of a target wheel of the vehicle in memory. N is an integer. A position module generates M angular positions based on the timestamps. M is an integer greater than one. Each of the M angular positions corresponds to a space between adjacent ones of the N teeth. A position estimator determines position of the target wheel based on the M positions. | 04-08-2010 |