Class / Patent application number | Description | Number of patent applications / Date published |
123070000 | Pump and cylinder adjacent | 46 |
20090038596 | Spark plug location for split-cycle engine - A split-cycle engine includes separate compression and expansion cylinders connected by a crossover passage. Crossover compression and expansion valves define a pressure chamber between them in the crossover passage for storing pressurized gas prior to timed delivery into the expansion cylinder. A fuel-air mixture is delivered into the expansion cylinder for ignition and expansion, developing power. One or more ignition sources, such as spark plugs, are positioned to encourage rapid combustion after ignition in the expansion cylinder but far enough from the crossover expansion valve(s) to prevent burning gases from reaching the crossover expansion valves before they are substantially closed to avoid entry of burning gas therein. A “safe distance” (“S”) between the ignition source and an opening of the crossover expansion valve is expressed by the function: S (mm)=combustion speed (mm/crank angle degree)×crank angle degrees from ignition to crossover expansion valve closing. | 02-12-2009 |
20090038597 | Knock resistant split-cycle engine and method - An engine has a rotatable crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve defining a pressure chamber therebetween. A fuel injector is disposed in the pressure chamber of the crossover passage. Fuel injection from the fuel injector into the crossover passage is timed to occur entirely during the compression stroke of the compression piston. | 02-12-2009 |
20090038598 | Split-cycle engine with early crossover compression valve opening - A split-cycle engine includes a crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. The crossover compression valve is timed to open when the pressure in the compression cylinder is less than the upstream pressure in the crossover passage at the crossover compression valve. | 02-12-2009 |
20090038599 | Split-cycle engine with a helical crossover passage - An engine has a crankshaft. A compression piston within a compression cylinder is connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke. An expansion piston within an expansion cylinder is connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve. A runner section is in a downstream portion of the crossover passage, and a helical end section is integrally connected to the runner section. The helical end section has a funnel spiraling about a valve stem of the crossover expansion valve. The funnel forces incoming air to rotate about the valve stem prior to entering the expansion cylinder to promote turbulent kinetic energy in the cylinder air/fuel charge. | 02-12-2009 |
20090199829 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 08-13-2009 |
20090241926 | SPLIT-CYCLE FOUR-STROKE ENGINE - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 10-01-2009 |
20090241927 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 10-01-2009 |
20090250046 | SPLIT FOUR STROKE ENGINE - An engine includes a crankshaft, rotating about a crankshaft axis of the engine. A power piston is received within a first cylinder and operatively connected to the crankshaft such that the power piston reciprocates through a power stroke and an exhaust stroke during a single rotation of the crankshaft. A compression piston is received within a second cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. A gas passage interconnects the first and second cylinders. The gas passage includes an inlet valve and an outlet valve defining a pressure chamber therebetween. The outlet valve permits substantially one-way flow of compressed gas from the pressure chamber to the first cylinder. The power piston descends to a firing position from its top dead center position. | 10-08-2009 |
20090266347 | SPLIT-CYCLE AIR HYBRID ENGINE - A split-cycle air hybrid engine operatively connects an air reservoir to a split cycle engine. A power piston is received within a power cylinder and operatively connected to a crankshaft such that the power piston reciprocates through an expansion stroke and an exhaust stroke during a single revolution of the crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke in a single rotation of the crankshaft. The compression cylinder is selectively controllable to place the compression piston in a compression mode or an idle mode. An air reservoir is operatively connected between the compression cylinder and the power cylinder and selectively operable to receive compressed air from the compression cylinder and to deliver compressed air to the power cylinder for use in transmitting power to the crankshaft during engine operation. | 10-29-2009 |
20090272368 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 11-05-2009 |
20100051003 | COMPRESSED-AIR OR GAS AND/OR ADDITIONAL-ENERGY ENGINE HAVINE AN ACTIVE EXPANSION CHAMBER - An engine supplied with compressed air includes a main drive piston ( | 03-04-2010 |
20100180875 | Seating control device for a valve for a split-cycle engine - A seating control device for a valve, comprising:
| 07-22-2010 |
20100236533 | Valve Seat Insert for a Split-Cycle Engine - The present invention provides an improved valve seat insert, particularly for split-cycle engines with outwardly opening crossover valves. The improved valve seat insert combines an interference fit section with a threaded section. The interference fit section aligns a valve seat and can prevent rotation of the valve seat insert. The threaded section prevents axial movement of the valve seat insert. | 09-23-2010 |
20100236534 | SPLIT-CYCLE ENGINE WITH PILOT CROSSOVER VALVE - A split-cycle engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the expansion and compression cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve defining a pressure chamber therebetween. A pilot crossover valve is disposed between the crossover passage and the expansion cylinder. The pilot crossover valve equalizes fluid pressures acting against the crossover expansion valve in an opening direction, reducing the forces required in actuating the crossover expansion valve. | 09-23-2010 |
20100252010 | Crescent-Shaped Recess in Piston of a Split-Cycle Engine - The present invention generally relates to a recess in the top of a piston. More particularly, the present invention relates to a crescent-shaped recess in the top of an expansion piston of a split-cycle engine. | 10-07-2010 |
20100263645 | PART-LOAD CONTROL IN A SPLIT-CYCLE ENGINE - An engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston is operable to reciprocate through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion (power) piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston is operable to reciprocate through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. At least two crossover passages interconnect the compression and expansion cylinders. Each of the at least two crossover passages includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve operable to define a pressure chamber therebetween. The engine controls and maximizes engine efficiency at part-load by utilizing only selected crossover passages. | 10-21-2010 |
20100263646 | VARIABLE VOLUME CROSSOVER PASSAGE FOR A SPLIT-CYCLE ENGINE - An engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston is operable to reciprocate through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion (power) piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston is operable to reciprocate through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A variable volume crossover passage interconnects the compression and expansion cylinders, and includes a variable volume housing to controllably regulate the air flow from the compression cylinder to the expansion cylinder. | 10-21-2010 |
20100269806 | Method for Operating an Internal Combustion Engine and an Internal Combustion Engine - An engine comprises a power cylinder having a power chamber, a compression cylinder having a compression chamber and a flow-through chamber connected with the compression chamber when a flow-through valve is open and connected with the power chamber when an intake valve is open. The engine is operated by flowing-in fresh charge into the compression chamber while increasing the volume of the compression chamber, compressing the fresh charge while decreasing the volume of the compression chamber, pushing-over the compressed fresh charge into the flow-through chamber, pushing-out the fresh charge into the power chamber, combusting the fresh charge while increasing the volume of the power chamber and discharging the combusted charge while decreasing the volume of the power chamber. The flow-through chamber volume increases during at least a part of the pushing-over step and, at the end thereof, the volume is less than 15% of its maximum volume. | 10-28-2010 |
20100282225 | Air Supply for Components of a Split-Cycle Engine - The present invention generally relates to providing an air supply for components associated with an engine. More particularly, the present invention relates to a system and method for using compressed air generated by a split-cycle engine to power components such as valves or air springs associated with the split-cycle engine. | 11-11-2010 |
20110017181 | Crossover valve systems - Crossover valve systems and corresponding methods offer an effective means to overcome large opening pressure force, or provide reasonable gas flow area, or both. In an exemplary embodiment, a crossover valve system for a split-cycle engine having a power cylinder and a crossover passage comprises first and second crossover valves, each valve opening outwardly away from the power cylinder and providing fluid communication between the power cylinder and the crossover passage, with the diameter of the second crossover valve being larger than the diameter of the first crossover valve; and an actuation mechanism operative to open the first crossover valve, then the second crossover valve after a predetermined delay to allow a certain rise in the pressure inside the power cylinder, resulting in much smaller differential pressure forces across the crossover valves, larger flow areas, or both. | 01-27-2011 |
20110220075 | SPLIT-CYCLE ENGINE WITH HIGH RESIDUAL EXPANSION RATIO - An engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover expansion (XovrE) valve disposed therein. In an Engine Firing (EF) mode of the engine, the engine has a residual expansion ratio at XovrE valve closing of 10.0 to 1 or greater, and more preferably 15.7 to 1 or greater. | 09-15-2011 |
20110220076 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH AIR EXPANDER AND FIRING MODE - A split-cycle air hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Air Expander and Firing (AEF) mode of the engine, the engine has a residual expansion ratio at XovrE valve closing of 15.7 to 1 or greater, and more preferably in the range of 15.7 to 1 and 40.8 to 1. | 09-15-2011 |
20110220077 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH FIRING AND CHARGING MODE - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An intake valve selectively controls air flow into the compression cylinder. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and crossover expansion (XovrE) valve therein. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In a Firing and Charging (FC) mode of the engine, the air reservoir valve is kept closed until the XovrE valve is substantially closed during a single rotation of the crankshaft such that the expansion cylinder is charged with compressed air before the air reservoir is charged with compressed air. | 09-15-2011 |
20110220078 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH COMPRESSOR DEACTIVATION - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An intake valve selectively controls air flow into the compression cylinder. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve therein. An air reservoir is operatively connected to the crossover passage. In an Air Expander (AE) mode and an Air Expander and Firing (AEF) mode of the engine, the XovrC valve is kept closed during an entire rotation of the crankshaft, and the intake valve is kept open for at least 240 CA degrees of the same rotation of the crankshaft. | 09-15-2011 |
20110220079 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH EXPANDER DEACTIVATION - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. An exhaust valve selectively controls gas flow out of the expansion cylinder. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve therein. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Air Compressor (AC) mode of the engine, the XovrE valve is kept closed during an entire rotation of the crankshaft, and the exhaust valve is kept open for at least 240 CA degrees of the same rotation of the crankshaft. | 09-15-2011 |
20110220080 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH AIR TANK VALVE - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder. An expansion piston is slidably received within an expansion cylinder. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Engine Firing (EF) mode, the air reservoir valve is kept closed. In an Air Expander (AE) and an Air Expander and Firing (AEF) mode, the air reservoir valve is kept open for a duration that is at least as long as a duration of the XovrE valve opening event. In an Air Compressor (AC) mode and a Firing and Charging (FC) mode, the air reservoir valve is selectively opened and closed. | 09-15-2011 |
20110220081 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH MINIMIZED CROSSOVER PORT VOLUME - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir port connects the crossover passage to the air reservoir. An air reservoir valve is disposed in the air reservoir port. The air reservoir port includes a first air reservoir port section between the crossover passage and the air reservoir valve. The first air reservoir port section has a volume that is less than or equal to a volume of the crossover passage. | 09-15-2011 |
20110220082 | SPLIT-CYCLE AIR-HYBRID ENGINE HAVING A THRESHOLD MINIMUM TANK PRESSURE - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. The engine is operable in an Air Expander and Firing (AEF) mode. In the AEF mode, the pressure in the air reservoir is greater than or equal to approximately 5 bar absolute, preferably greater than or equal to approximately 7 bar absolute, and more preferably greater than or equal to approximately 10 bar absolute. | 09-15-2011 |
20110220083 | SPLIT-CYCLE ENGINE HAVING A CROSSOVER EXPANSION VALVE FOR LOAD CONTROL - An engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover expansion (XovrE) valve disposed therein. In at least one of an Engine Firing (EF) mode, an Firing and Charging (FC) mode, and an Air Expander and Firing (AEF) mode of the engine, the timing of the XovrE valve closing is variable to control engine load, and the engine has a residual expansion ratio at XovrE valve closing of 14 to 1 or greater. | 09-15-2011 |
20110226224 | SPLIT-CYCLE INTERNAL COMBUSTION ENGINE - A split-cycle internal combustion engine is disclosed. The engine includes a cylinder block, and a plurality of cooperating power pistons and cylinders mounted in the cylinder block. The power pistons are configured to be energized by forces of combustion. The engine also includes a compressor piston and cylinder configured to compress a volume of air and transfer the compressed air to the power pistons, and an expander piston and cylinder configured to receive exhaust gases from the power pistons. The engine additionally includes a first crankshaft operatively connected to and rotatably driven by the power pistons, a second crankshaft operatively connected to the compressor piston and configured to rotatably drive the compressor piston, and a third crankshaft operatively connected to the expander piston and configured to be rotatably driven by the expander piston. The first, second, and third crankshafts are operatively connected to each other for coordinated rotation. | 09-22-2011 |
20110308505 | SPLIT-CYCLE ENGINE WITH CROSSOVER PASSAGE COMBUSTION - Methods, systems, and devices are disclosed that generally involve split-cycle engines in which a combustion event is initiated in a crossover passage that interconnects a compression cylinder and an expansion cylinder of the split-cycle engine. In one embodiment, the compression piston leads the expansion piston by a phase shift angle so that, for example, a substantial amount of the combustion event can occur in the crossover passage at a constant volume. | 12-22-2011 |
20120012089 | KNOCK RESISTANT SPLIT-CYCLE ENGINE AND METHOD - An engine has a rotatable crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve defining a pressure chamber therebetween. A fuel injector is disposed in the pressure chamber of the crossover passage. Fuel injection from the fuel injector into the crossover passage is timed to occur entirely during the compression stroke of the compression piston. | 01-19-2012 |
20120031383 | INTERNAL COMBUSTION ENGINE - An internal combustion engine with a crankshaft, at least one compression piston which is housed in a compression cylinder, and at least one working piston which is housed in a working cylinder. Movement of the compression piston and of the working piston are coupled kinematically to movement of the crankshaft, so that the compression piston moves back and forth during a single revolution of the crankshaft in an intake stroke and a compression stroke and that the working piston moves back and forth during a single revolution of the crankshaft by a working stroke and an exhaust stroke. The compression cylinder has at least one inlet valve for drawing-in air into the compression cylinder during downward movement of the compression piston, and the working cylinder has at least one outlet valve for discharging combustion gases from the working cylinder during upward movement of the working piston. | 02-09-2012 |
20120073551 | TURBOCHARGED DOWNSIZED COMPRESSION CYLINDER FOR A SPLIT-CYCLE ENGINE - A split-cycle engine includes an expander, the expander including an expansion piston received within an expansion cylinder. A compressor includes a compression piston received within a compression cylinder. A crossover passage interconnects the compression and expansion cylinders. An intake manifold is connected to the compression cylinder. A boosting device providing a 1.7 bar absolute or greater boost pressure level is connected to the intake manifold. An intake valve is disposed between the intake manifold and the compression cylinder. The intake valve closing is timed to provide a compressor volumetric efficiency of 0.75 or greater. A compressor displacement volume is sized relative to an expander displacement volume such that the combination of compressor displacement volume and boost pressure level provides an expander volumetric efficiency relative to ambient conditions that is 0.90 or greater. | 03-29-2012 |
20120073552 | CROSSOVER PASSAGE SIZING FOR SPLIT-CYCLE ENGINE - In split-cycle engines and air hybrid split-cycle engines, the sizing of the crossover passage is critical to engine efficiency. Efficiency can be improved by sizing the crossover passage volume to be small relative to the volume of the cylinders, and in particular relative to the volume of the compression cylinder. This allows for a higher pressure in the crossover passage, which extends the duration of sonic flow from the crossover passage into the expansion cylinder and increases combustion pressure. The methods, systems, and devices disclosed herein generally involve sizing the crossover passages, cylinders, or other components of a split-cycle engine or air hybrid split-cycle engine to improve efficiency. | 03-29-2012 |
20120073553 | EXHAUST VALVE TIMING FOR SPLIT-CYCLE ENGINE - The engines, engine components, and related methods disclosed herein generally involve closing an exhaust valve through which exhaust gasses and other combustion products are evacuated from the expansion cylinder of a split-cycle engine before opening a crossover expansion valve through which a fresh charge of air and/or fuel is supplied to the expansion cylinder. The exhaust valve is preferably closed as late as possible after a combustion event, but with sufficient margin before opening of the crossover expansion valve and, in the case of an inwardly-opening exhaust valve, before valve-to-piston contact occurs. Preferably, the exhaust valve is closed about 0 CA degrees to about 15 CA degrees before the crossover expansion valve is opened. | 03-29-2012 |
20120080017 | SPLIT-CYCLE AIR HYBRID V-ENGINE - A split-cycle air hybrid engine with improved efficiency is disclosed in which the centerline of a compression cylinder is positioned at a non-zero angle with respect to the centerline of an expansion cylinder such that the engine has a V-shaped configuration. In one embodiment, the centerlines of the respective cylinders intersect an axis parallel to, but offset from, the axis of rotation of the crankshaft. Modular crossover passages, crossover passage manifolds, and associated air reservoir valve assemblies and thermal regulation systems are also disclosed. | 04-05-2012 |
20120103314 | Split Cycle Reciprocating Piston Engine - A split cycle reciprocating piston engine includes a compression cylinder ( | 05-03-2012 |
20120192841 | SPLIT-CYCLE AIR HYBRID ENGINE WITH DWELL CAM - Devices and related methods are disclosed that generally involve actuating an engine valve with a cam having a dwell section. These devices and methods have application in split-cycle engines, air hybrid engines, conventional engines, and/or various combinations thereof. Both inwardly- and outwardly-opening valves can be actuated with the devices and methods disclosed herein. Additional valve train elements are disclosed, including rockers, lost-motion systems, and valve seating control devices. | 08-02-2012 |
20120298086 | FUEL DELIVERY SYSTEM FOR NATURAL GAS SPLIT-CYCLE ENGINE - Methods, systems, and devices are disclosed that generally involve split-cycle engines in which natural gas, and in particular natural gas supplied from a low pressure source, is used as the fuel for combustion. In one embodiment, natural gas is supplied directly to the expansion cylinder via a gas inlet valve just before and/or just after the expansion piston reaches top dead center, when the pressure within the expansion cylinder is relatively low. A crossover expansion valve is then opened to distribute the natural gas in the expansion cylinder and mix it with high pressure air from a crossover passage before ignition during a power stroke. Natural gas split-cycle air hybrid engines are also disclosed. | 11-29-2012 |
20130298888 | Alternating Split Cycle Combustion Engine and Method - An internal combustion engine includes a cylinder that is connectable to an intake manifold through an intake valve, to an exhaust manifold through an exhaust valve, and to a transfer manifold through transfer and combustion valves. A fuel injector associated with the cylinder is adapted to provide fuel to the cylinder. During operation, the cylinder performs an intake stroke, followed by a compression stroke. A compressed charge from the cylinder passes to and is collected in the transfer manifold through the transfer valve. The cylinder is filled by a compressed charge from the transfer manifold through the combustion valve at the same time as the fuel injector provides fuel. The cylinder then undergoes combustion and exhaust strokes. In this way, cylinder operation alternates between combustor and compressor split combustion modes. | 11-14-2013 |
20130298889 | OUTWARDLY-OPENING VALVE WITH CAST-IN DIFFUSER - Disclosed is an engine valve port including a valve opening, a first portion, and a separate second portion. The first portion and the second portion are separately connected to the valve opening, and the first portion and the second portion merge together at a location spaced from the valve opening. The valve port has a bifurcated, porpoise-like shape. The first portion and the second portion are generally arcuate in shape, and the first portion and the second portion have a generally semicircular cross-section. Also disclosed is an engine including such a valve port. A valve associated with the valve port may be an outwardly-opening valve. | 11-14-2013 |
20140158102 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH AIR EXPANDER AND FIRING MODE - A split-cycle air hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Air Expander and Firing (AEF) mode of the engine, the engine has a residual expansion ratio at XovrE valve closing of 15.7 to 1 or greater, and more preferably in the range of 15.7 to 1 and 40.8 to 1. | 06-12-2014 |
20140338646 | CROSSOVER VALVE IN DOUBLE PISTON CYCLE ENGINE - An internal combustion engine, including a combustion chamber with a first aperture; a compression chamber with a second aperture; and a crossover valve comprising an internal chamber, first and second valve seats, a valve head, and first and second valve faces on the valve head, wherein the first aperture allows fluid communication between the combustion chamber and the internal chamber, the second aperture allows fluid communication between the compression chamber and the internal chamber, the first valve face couples to the first valve seat to occlude the first aperture, and the second valve face couples to the second valve seat to occlude the second aperture. | 11-20-2014 |
20150315959 | SPOOL SHUTTLE CROSSOVER VALVE IN SPILT-CYCLE ENGINE - A split-cycle engine includes: a first cylinder housing a first piston, wherein the first piston performs an intake stroke and a compression stroke, but does not perform an exhaust stroke; a second cylinder housing a second piston, wherein the second piston performs an expansion stroke and an exhaust stroke, but does not perform an intake stroke; and a valve chamber housing a valve, the valve comprising an internal chamber that selectively fluidly couples to the first and second cylinders, wherein the valve and internal chamber move within the valve chamber and relative to the first and second cylinders. | 11-05-2015 |
20180023465 | SPLIT CYCLE ENGINE | 01-25-2018 |
123070000 | Lengthwise scavenging of power cylinder | 1 |
20090038596 | Spark plug location for split-cycle engine - A split-cycle engine includes separate compression and expansion cylinders connected by a crossover passage. Crossover compression and expansion valves define a pressure chamber between them in the crossover passage for storing pressurized gas prior to timed delivery into the expansion cylinder. A fuel-air mixture is delivered into the expansion cylinder for ignition and expansion, developing power. One or more ignition sources, such as spark plugs, are positioned to encourage rapid combustion after ignition in the expansion cylinder but far enough from the crossover expansion valve(s) to prevent burning gases from reaching the crossover expansion valves before they are substantially closed to avoid entry of burning gas therein. A “safe distance” (“S”) between the ignition source and an opening of the crossover expansion valve is expressed by the function: S (mm)=combustion speed (mm/crank angle degree)×crank angle degrees from ignition to crossover expansion valve closing. | 02-12-2009 |
20090038597 | Knock resistant split-cycle engine and method - An engine has a rotatable crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve defining a pressure chamber therebetween. A fuel injector is disposed in the pressure chamber of the crossover passage. Fuel injection from the fuel injector into the crossover passage is timed to occur entirely during the compression stroke of the compression piston. | 02-12-2009 |
20090038598 | Split-cycle engine with early crossover compression valve opening - A split-cycle engine includes a crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. The crossover compression valve is timed to open when the pressure in the compression cylinder is less than the upstream pressure in the crossover passage at the crossover compression valve. | 02-12-2009 |
20090038599 | Split-cycle engine with a helical crossover passage - An engine has a crankshaft. A compression piston within a compression cylinder is connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke. An expansion piston within an expansion cylinder is connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve. A runner section is in a downstream portion of the crossover passage, and a helical end section is integrally connected to the runner section. The helical end section has a funnel spiraling about a valve stem of the crossover expansion valve. The funnel forces incoming air to rotate about the valve stem prior to entering the expansion cylinder to promote turbulent kinetic energy in the cylinder air/fuel charge. | 02-12-2009 |
20090199829 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 08-13-2009 |
20090241926 | SPLIT-CYCLE FOUR-STROKE ENGINE - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 10-01-2009 |
20090241927 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 10-01-2009 |
20090250046 | SPLIT FOUR STROKE ENGINE - An engine includes a crankshaft, rotating about a crankshaft axis of the engine. A power piston is received within a first cylinder and operatively connected to the crankshaft such that the power piston reciprocates through a power stroke and an exhaust stroke during a single rotation of the crankshaft. A compression piston is received within a second cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. A gas passage interconnects the first and second cylinders. The gas passage includes an inlet valve and an outlet valve defining a pressure chamber therebetween. The outlet valve permits substantially one-way flow of compressed gas from the pressure chamber to the first cylinder. The power piston descends to a firing position from its top dead center position. | 10-08-2009 |
20090266347 | SPLIT-CYCLE AIR HYBRID ENGINE - A split-cycle air hybrid engine operatively connects an air reservoir to a split cycle engine. A power piston is received within a power cylinder and operatively connected to a crankshaft such that the power piston reciprocates through an expansion stroke and an exhaust stroke during a single revolution of the crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke in a single rotation of the crankshaft. The compression cylinder is selectively controllable to place the compression piston in a compression mode or an idle mode. An air reservoir is operatively connected between the compression cylinder and the power cylinder and selectively operable to receive compressed air from the compression cylinder and to deliver compressed air to the power cylinder for use in transmitting power to the crankshaft during engine operation. | 10-29-2009 |
20090272368 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 11-05-2009 |
20100051003 | COMPRESSED-AIR OR GAS AND/OR ADDITIONAL-ENERGY ENGINE HAVINE AN ACTIVE EXPANSION CHAMBER - An engine supplied with compressed air includes a main drive piston ( | 03-04-2010 |
20100180875 | Seating control device for a valve for a split-cycle engine - A seating control device for a valve, comprising:
| 07-22-2010 |
20100236533 | Valve Seat Insert for a Split-Cycle Engine - The present invention provides an improved valve seat insert, particularly for split-cycle engines with outwardly opening crossover valves. The improved valve seat insert combines an interference fit section with a threaded section. The interference fit section aligns a valve seat and can prevent rotation of the valve seat insert. The threaded section prevents axial movement of the valve seat insert. | 09-23-2010 |
20100236534 | SPLIT-CYCLE ENGINE WITH PILOT CROSSOVER VALVE - A split-cycle engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the expansion and compression cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve defining a pressure chamber therebetween. A pilot crossover valve is disposed between the crossover passage and the expansion cylinder. The pilot crossover valve equalizes fluid pressures acting against the crossover expansion valve in an opening direction, reducing the forces required in actuating the crossover expansion valve. | 09-23-2010 |
20100252010 | Crescent-Shaped Recess in Piston of a Split-Cycle Engine - The present invention generally relates to a recess in the top of a piston. More particularly, the present invention relates to a crescent-shaped recess in the top of an expansion piston of a split-cycle engine. | 10-07-2010 |
20100263645 | PART-LOAD CONTROL IN A SPLIT-CYCLE ENGINE - An engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston is operable to reciprocate through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion (power) piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston is operable to reciprocate through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. At least two crossover passages interconnect the compression and expansion cylinders. Each of the at least two crossover passages includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve operable to define a pressure chamber therebetween. The engine controls and maximizes engine efficiency at part-load by utilizing only selected crossover passages. | 10-21-2010 |
20100263646 | VARIABLE VOLUME CROSSOVER PASSAGE FOR A SPLIT-CYCLE ENGINE - An engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston is operable to reciprocate through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion (power) piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston is operable to reciprocate through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A variable volume crossover passage interconnects the compression and expansion cylinders, and includes a variable volume housing to controllably regulate the air flow from the compression cylinder to the expansion cylinder. | 10-21-2010 |
20100269806 | Method for Operating an Internal Combustion Engine and an Internal Combustion Engine - An engine comprises a power cylinder having a power chamber, a compression cylinder having a compression chamber and a flow-through chamber connected with the compression chamber when a flow-through valve is open and connected with the power chamber when an intake valve is open. The engine is operated by flowing-in fresh charge into the compression chamber while increasing the volume of the compression chamber, compressing the fresh charge while decreasing the volume of the compression chamber, pushing-over the compressed fresh charge into the flow-through chamber, pushing-out the fresh charge into the power chamber, combusting the fresh charge while increasing the volume of the power chamber and discharging the combusted charge while decreasing the volume of the power chamber. The flow-through chamber volume increases during at least a part of the pushing-over step and, at the end thereof, the volume is less than 15% of its maximum volume. | 10-28-2010 |
20100282225 | Air Supply for Components of a Split-Cycle Engine - The present invention generally relates to providing an air supply for components associated with an engine. More particularly, the present invention relates to a system and method for using compressed air generated by a split-cycle engine to power components such as valves or air springs associated with the split-cycle engine. | 11-11-2010 |
20110017181 | Crossover valve systems - Crossover valve systems and corresponding methods offer an effective means to overcome large opening pressure force, or provide reasonable gas flow area, or both. In an exemplary embodiment, a crossover valve system for a split-cycle engine having a power cylinder and a crossover passage comprises first and second crossover valves, each valve opening outwardly away from the power cylinder and providing fluid communication between the power cylinder and the crossover passage, with the diameter of the second crossover valve being larger than the diameter of the first crossover valve; and an actuation mechanism operative to open the first crossover valve, then the second crossover valve after a predetermined delay to allow a certain rise in the pressure inside the power cylinder, resulting in much smaller differential pressure forces across the crossover valves, larger flow areas, or both. | 01-27-2011 |
20110220075 | SPLIT-CYCLE ENGINE WITH HIGH RESIDUAL EXPANSION RATIO - An engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover expansion (XovrE) valve disposed therein. In an Engine Firing (EF) mode of the engine, the engine has a residual expansion ratio at XovrE valve closing of 10.0 to 1 or greater, and more preferably 15.7 to 1 or greater. | 09-15-2011 |
20110220076 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH AIR EXPANDER AND FIRING MODE - A split-cycle air hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Air Expander and Firing (AEF) mode of the engine, the engine has a residual expansion ratio at XovrE valve closing of 15.7 to 1 or greater, and more preferably in the range of 15.7 to 1 and 40.8 to 1. | 09-15-2011 |
20110220077 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH FIRING AND CHARGING MODE - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An intake valve selectively controls air flow into the compression cylinder. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and crossover expansion (XovrE) valve therein. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In a Firing and Charging (FC) mode of the engine, the air reservoir valve is kept closed until the XovrE valve is substantially closed during a single rotation of the crankshaft such that the expansion cylinder is charged with compressed air before the air reservoir is charged with compressed air. | 09-15-2011 |
20110220078 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH COMPRESSOR DEACTIVATION - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An intake valve selectively controls air flow into the compression cylinder. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve therein. An air reservoir is operatively connected to the crossover passage. In an Air Expander (AE) mode and an Air Expander and Firing (AEF) mode of the engine, the XovrC valve is kept closed during an entire rotation of the crankshaft, and the intake valve is kept open for at least 240 CA degrees of the same rotation of the crankshaft. | 09-15-2011 |
20110220079 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH EXPANDER DEACTIVATION - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. An exhaust valve selectively controls gas flow out of the expansion cylinder. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve therein. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Air Compressor (AC) mode of the engine, the XovrE valve is kept closed during an entire rotation of the crankshaft, and the exhaust valve is kept open for at least 240 CA degrees of the same rotation of the crankshaft. | 09-15-2011 |
20110220080 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH AIR TANK VALVE - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder. An expansion piston is slidably received within an expansion cylinder. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Engine Firing (EF) mode, the air reservoir valve is kept closed. In an Air Expander (AE) and an Air Expander and Firing (AEF) mode, the air reservoir valve is kept open for a duration that is at least as long as a duration of the XovrE valve opening event. In an Air Compressor (AC) mode and a Firing and Charging (FC) mode, the air reservoir valve is selectively opened and closed. | 09-15-2011 |
20110220081 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH MINIMIZED CROSSOVER PORT VOLUME - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir port connects the crossover passage to the air reservoir. An air reservoir valve is disposed in the air reservoir port. The air reservoir port includes a first air reservoir port section between the crossover passage and the air reservoir valve. The first air reservoir port section has a volume that is less than or equal to a volume of the crossover passage. | 09-15-2011 |
20110220082 | SPLIT-CYCLE AIR-HYBRID ENGINE HAVING A THRESHOLD MINIMUM TANK PRESSURE - A split-cycle air-hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. The engine is operable in an Air Expander and Firing (AEF) mode. In the AEF mode, the pressure in the air reservoir is greater than or equal to approximately 5 bar absolute, preferably greater than or equal to approximately 7 bar absolute, and more preferably greater than or equal to approximately 10 bar absolute. | 09-15-2011 |
20110220083 | SPLIT-CYCLE ENGINE HAVING A CROSSOVER EXPANSION VALVE FOR LOAD CONTROL - An engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover expansion (XovrE) valve disposed therein. In at least one of an Engine Firing (EF) mode, an Firing and Charging (FC) mode, and an Air Expander and Firing (AEF) mode of the engine, the timing of the XovrE valve closing is variable to control engine load, and the engine has a residual expansion ratio at XovrE valve closing of 14 to 1 or greater. | 09-15-2011 |
20110226224 | SPLIT-CYCLE INTERNAL COMBUSTION ENGINE - A split-cycle internal combustion engine is disclosed. The engine includes a cylinder block, and a plurality of cooperating power pistons and cylinders mounted in the cylinder block. The power pistons are configured to be energized by forces of combustion. The engine also includes a compressor piston and cylinder configured to compress a volume of air and transfer the compressed air to the power pistons, and an expander piston and cylinder configured to receive exhaust gases from the power pistons. The engine additionally includes a first crankshaft operatively connected to and rotatably driven by the power pistons, a second crankshaft operatively connected to the compressor piston and configured to rotatably drive the compressor piston, and a third crankshaft operatively connected to the expander piston and configured to be rotatably driven by the expander piston. The first, second, and third crankshafts are operatively connected to each other for coordinated rotation. | 09-22-2011 |
20110308505 | SPLIT-CYCLE ENGINE WITH CROSSOVER PASSAGE COMBUSTION - Methods, systems, and devices are disclosed that generally involve split-cycle engines in which a combustion event is initiated in a crossover passage that interconnects a compression cylinder and an expansion cylinder of the split-cycle engine. In one embodiment, the compression piston leads the expansion piston by a phase shift angle so that, for example, a substantial amount of the combustion event can occur in the crossover passage at a constant volume. | 12-22-2011 |
20120012089 | KNOCK RESISTANT SPLIT-CYCLE ENGINE AND METHOD - An engine has a rotatable crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. An expansion piston is received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke during a single rotation of the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression valve and a crossover expansion valve defining a pressure chamber therebetween. A fuel injector is disposed in the pressure chamber of the crossover passage. Fuel injection from the fuel injector into the crossover passage is timed to occur entirely during the compression stroke of the compression piston. | 01-19-2012 |
20120031383 | INTERNAL COMBUSTION ENGINE - An internal combustion engine with a crankshaft, at least one compression piston which is housed in a compression cylinder, and at least one working piston which is housed in a working cylinder. Movement of the compression piston and of the working piston are coupled kinematically to movement of the crankshaft, so that the compression piston moves back and forth during a single revolution of the crankshaft in an intake stroke and a compression stroke and that the working piston moves back and forth during a single revolution of the crankshaft by a working stroke and an exhaust stroke. The compression cylinder has at least one inlet valve for drawing-in air into the compression cylinder during downward movement of the compression piston, and the working cylinder has at least one outlet valve for discharging combustion gases from the working cylinder during upward movement of the working piston. | 02-09-2012 |
20120073551 | TURBOCHARGED DOWNSIZED COMPRESSION CYLINDER FOR A SPLIT-CYCLE ENGINE - A split-cycle engine includes an expander, the expander including an expansion piston received within an expansion cylinder. A compressor includes a compression piston received within a compression cylinder. A crossover passage interconnects the compression and expansion cylinders. An intake manifold is connected to the compression cylinder. A boosting device providing a 1.7 bar absolute or greater boost pressure level is connected to the intake manifold. An intake valve is disposed between the intake manifold and the compression cylinder. The intake valve closing is timed to provide a compressor volumetric efficiency of 0.75 or greater. A compressor displacement volume is sized relative to an expander displacement volume such that the combination of compressor displacement volume and boost pressure level provides an expander volumetric efficiency relative to ambient conditions that is 0.90 or greater. | 03-29-2012 |
20120073552 | CROSSOVER PASSAGE SIZING FOR SPLIT-CYCLE ENGINE - In split-cycle engines and air hybrid split-cycle engines, the sizing of the crossover passage is critical to engine efficiency. Efficiency can be improved by sizing the crossover passage volume to be small relative to the volume of the cylinders, and in particular relative to the volume of the compression cylinder. This allows for a higher pressure in the crossover passage, which extends the duration of sonic flow from the crossover passage into the expansion cylinder and increases combustion pressure. The methods, systems, and devices disclosed herein generally involve sizing the crossover passages, cylinders, or other components of a split-cycle engine or air hybrid split-cycle engine to improve efficiency. | 03-29-2012 |
20120073553 | EXHAUST VALVE TIMING FOR SPLIT-CYCLE ENGINE - The engines, engine components, and related methods disclosed herein generally involve closing an exhaust valve through which exhaust gasses and other combustion products are evacuated from the expansion cylinder of a split-cycle engine before opening a crossover expansion valve through which a fresh charge of air and/or fuel is supplied to the expansion cylinder. The exhaust valve is preferably closed as late as possible after a combustion event, but with sufficient margin before opening of the crossover expansion valve and, in the case of an inwardly-opening exhaust valve, before valve-to-piston contact occurs. Preferably, the exhaust valve is closed about 0 CA degrees to about 15 CA degrees before the crossover expansion valve is opened. | 03-29-2012 |
20120080017 | SPLIT-CYCLE AIR HYBRID V-ENGINE - A split-cycle air hybrid engine with improved efficiency is disclosed in which the centerline of a compression cylinder is positioned at a non-zero angle with respect to the centerline of an expansion cylinder such that the engine has a V-shaped configuration. In one embodiment, the centerlines of the respective cylinders intersect an axis parallel to, but offset from, the axis of rotation of the crankshaft. Modular crossover passages, crossover passage manifolds, and associated air reservoir valve assemblies and thermal regulation systems are also disclosed. | 04-05-2012 |
20120103314 | Split Cycle Reciprocating Piston Engine - A split cycle reciprocating piston engine includes a compression cylinder ( | 05-03-2012 |
20120192841 | SPLIT-CYCLE AIR HYBRID ENGINE WITH DWELL CAM - Devices and related methods are disclosed that generally involve actuating an engine valve with a cam having a dwell section. These devices and methods have application in split-cycle engines, air hybrid engines, conventional engines, and/or various combinations thereof. Both inwardly- and outwardly-opening valves can be actuated with the devices and methods disclosed herein. Additional valve train elements are disclosed, including rockers, lost-motion systems, and valve seating control devices. | 08-02-2012 |
20120298086 | FUEL DELIVERY SYSTEM FOR NATURAL GAS SPLIT-CYCLE ENGINE - Methods, systems, and devices are disclosed that generally involve split-cycle engines in which natural gas, and in particular natural gas supplied from a low pressure source, is used as the fuel for combustion. In one embodiment, natural gas is supplied directly to the expansion cylinder via a gas inlet valve just before and/or just after the expansion piston reaches top dead center, when the pressure within the expansion cylinder is relatively low. A crossover expansion valve is then opened to distribute the natural gas in the expansion cylinder and mix it with high pressure air from a crossover passage before ignition during a power stroke. Natural gas split-cycle air hybrid engines are also disclosed. | 11-29-2012 |
20130298888 | Alternating Split Cycle Combustion Engine and Method - An internal combustion engine includes a cylinder that is connectable to an intake manifold through an intake valve, to an exhaust manifold through an exhaust valve, and to a transfer manifold through transfer and combustion valves. A fuel injector associated with the cylinder is adapted to provide fuel to the cylinder. During operation, the cylinder performs an intake stroke, followed by a compression stroke. A compressed charge from the cylinder passes to and is collected in the transfer manifold through the transfer valve. The cylinder is filled by a compressed charge from the transfer manifold through the combustion valve at the same time as the fuel injector provides fuel. The cylinder then undergoes combustion and exhaust strokes. In this way, cylinder operation alternates between combustor and compressor split combustion modes. | 11-14-2013 |
20130298889 | OUTWARDLY-OPENING VALVE WITH CAST-IN DIFFUSER - Disclosed is an engine valve port including a valve opening, a first portion, and a separate second portion. The first portion and the second portion are separately connected to the valve opening, and the first portion and the second portion merge together at a location spaced from the valve opening. The valve port has a bifurcated, porpoise-like shape. The first portion and the second portion are generally arcuate in shape, and the first portion and the second portion have a generally semicircular cross-section. Also disclosed is an engine including such a valve port. A valve associated with the valve port may be an outwardly-opening valve. | 11-14-2013 |
20140158102 | SPLIT-CYCLE AIR-HYBRID ENGINE WITH AIR EXPANDER AND FIRING MODE - A split-cycle air hybrid engine includes a rotatable crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft. A crossover passage interconnects the compression and expansion cylinders. The crossover passage includes a crossover compression (XovrC) valve and a crossover expansion (XovrE) valve defining a pressure chamber therebetween. An air reservoir is operatively connected to the crossover passage. An air reservoir valve selectively controls air flow into and out of the air reservoir. In an Air Expander and Firing (AEF) mode of the engine, the engine has a residual expansion ratio at XovrE valve closing of 15.7 to 1 or greater, and more preferably in the range of 15.7 to 1 and 40.8 to 1. | 06-12-2014 |
20140338646 | CROSSOVER VALVE IN DOUBLE PISTON CYCLE ENGINE - An internal combustion engine, including a combustion chamber with a first aperture; a compression chamber with a second aperture; and a crossover valve comprising an internal chamber, first and second valve seats, a valve head, and first and second valve faces on the valve head, wherein the first aperture allows fluid communication between the combustion chamber and the internal chamber, the second aperture allows fluid communication between the compression chamber and the internal chamber, the first valve face couples to the first valve seat to occlude the first aperture, and the second valve face couples to the second valve seat to occlude the second aperture. | 11-20-2014 |
20150315959 | SPOOL SHUTTLE CROSSOVER VALVE IN SPILT-CYCLE ENGINE - A split-cycle engine includes: a first cylinder housing a first piston, wherein the first piston performs an intake stroke and a compression stroke, but does not perform an exhaust stroke; a second cylinder housing a second piston, wherein the second piston performs an expansion stroke and an exhaust stroke, but does not perform an intake stroke; and a valve chamber housing a valve, the valve comprising an internal chamber that selectively fluidly couples to the first and second cylinders, wherein the valve and internal chamber move within the valve chamber and relative to the first and second cylinders. | 11-05-2015 |
20180023465 | SPLIT CYCLE ENGINE | 01-25-2018 |