Class / Patent application number | Description | Number of patent applications / Date published |
123580100 | Cylinders in-line | 23 |
20090025664 | INTERNAL COMBUSTION ENGINE - Exhaust ports ( | 01-29-2009 |
20090114174 | UPPER STRUCTURE OF ENGINE - Disclosed is an upper structure of an engine having three or more cylinders arranged in a row. A first one of a pair of adjacent cylinders among at least three of the cylinders serially arranged in a cylinder row direction is provided with a second spark plug at a position on an opposite side of a second one of the pair of adjacent cylinders, and the second one of the pair of adjacent cylinders is provided with a second spark plug at a position on an opposite side of the first one of the pair of adjacent cylinders. The present invention can provide enhanced flexibility in design of a head cover of the engine. | 05-07-2009 |
20100012058 | Variable coordination volume type eight-stroke engine - The present invention provides a variable coordination volume type eight-stroke engine for increasing the fuel efficiency in the heavy load operation by regulating the maximum air-pressure in the charge-coordinate-channel and adjusting the initiation timing of the injection-process as the engine load changes; wherein the maximum air-pressure of the charge-coordinate-channel will be regulated with a buffer piston in the range of 25% to 75% of the concurrent maximum combustion pressure of the mastery cylinder. | 01-21-2010 |
20100018479 | Eight-stroke engine with coordination pressure management system - The present invention provides a coordination pressure management system for raising the maximum operational range of the eight-stroke engine; said coordination pressure management system includes a real-time control system for adjusting the phase-difference between the master piston and the slave piston according to the combustion condition of the master cylinder and the compression condition of the slave cylinder, so that the maximum compression pressure of the slave-compression-process is regulated within the range of 75% to 25% of the concurrent maximum combustion pressure of the master cylinder, thereby maintaining a high coordination-efficiency in any operational load and rpm condition. | 01-28-2010 |
20100018480 | Two-stage-coordination type eight-stroke engine - The present invention provides a two-stage-coordination type eight-stroke engine for controlling the air-flows of the eight-stroke-operation and preventing the backfiring in the coordinate-port during the injection-process, so the coordinate-valve and the coordinate-port can be kept within the operational temperature in the heavy load operation; the two-stage-coordination system will open the coordinate-valve twice during each round of the eight-stroke-operation, so the hot-combustion-medium of the master cylinder will be mixing with the flow of the high-density-air in a conceal environment after the coordinate-valve is shut with the pressure difference, thereby reducing the heat loss and preventing the irreparable damage due to the backfiring effect. | 01-28-2010 |
20100258066 | Diesel type cross-cycle internal combustion engine - The present invention provides a cross-cycle internal combustion engine that can conduct a combustion cycle called as the cross-cycle with diesel ignition means. The diesel type cross-cycle operation consists of seven processes, which are the intake-process, the cold-compression process, the injection process, the cold-expansion process, the exhaust process, the hot-compression process, and the diesel-ignition process. | 10-14-2010 |
20100258067 | Overhead-exhaust type cross-cycle internal combustion engine - The present invention provides an overhead-exhaust type cross-cycle internal combustion engine that can conduct a combustion cycle called as the cross-cycle with overhead-exhaust means. The overhead-exhaust type cross-cycle operation consists of seven processes, which are the intake-process, the cold-compression process, the injection process, the cold-expansion process, the overhead-exhaust process, the hot-compression process, and the hot-expansion process. | 10-14-2010 |
20110094462 | ENGINE WITH INTERNAL EXHAUST GAS RECIRCULATION AND METHOD THEREOF - An internal combustion engine has four cylinders, each having a respective piston positioned therein and connected with a crankshaft for movement in the respective cylinder. Each cylinder has a plurality of ports with a plurality of valves openable and closable to control fluid flow into and out of the cylinder through the ports. Combustion occurs in a first two of the four cylinders (power cylinders) that are each interconnected between a second two of the four cylinders (inductor cylinders) via passages connecting ports of the respective cylinders. Opening and closing of the valves is timed to accomplish internal exhaust gas recirculation, i.e., such that fluid directed from the power cylinders to the inductor cylinders via the passages after combustion is redirected via the passages from the inductor cylinders to the power cylinders. A method of internal exhaust gas recirculation for an engine as described above is also provided. | 04-28-2011 |
20120031355 | ENGINE INCLUDING PARTIAL INTEGRATED INTAKE MANIFOLD - An engine assembly may include an engine block, a cylinder head coupled to the engine block, and first and second intake valves supported by the cylinder head. The engine block may define a first set of cylinder bores arranged longitudinally in series and including a first cylinder bore and a second cylinder bore adjacent the first cylinder bore. The cylinder head may define a cavity forming an intake manifold region, a first intake runner extending laterally inward from the intake manifold region toward the first cylinder bore and a second intake runner extending laterally inward from the intake manifold region toward the second cylinder bore. The first intake valve may selectively provide communication between the first intake runner and the first cylinder bore. The second intake valve may selectively provide communication between the second intake runner and the second cylinder bore. | 02-09-2012 |
20130061823 | ENGINE ASSEMBLY INCLUDING MULTIPLE BORE CENTER PITCH DIMENSIONS - An engine assembly includes an engine block defining a first cylinder bore, a second cylinder bore directly adjacent to the first cylinder bore and a third cylinder bore directly adjacent to the second cylinder bore. The engine block defines a first distance from a diametrical center of the first cylinder bore to a diametrical center of the second cylinder bore and defines a second distance from the diametrical center of the second cylinder bore to a diametrical center of the third cylinder bore. The first distance is different than the second distance. | 03-14-2013 |
20160032846 | VARIABLE DISPLACEMENT ENGINE CONTROL - Methods and systems are provided for controlling engine operation. One method comprises during a first condition, operating the engine with a single cylinder deactivated and remaining cylinders activated with a first intake duration, and during a second condition, operating the engine with the single cylinder deactivated and the remaining cylinders activated with a second intake duration. The method further comprises during a third condition, operating the engine with all cylinders activated. | 02-04-2016 |
20160097356 | ENGINE UNIT OF MOTORCYCLE - A plurality of cylinders are disposed in parallel in a vehicle width direction, a clutch chamber is disposed in either one of the right and the left in the vehicle width direction, an intake manifold, a fuel injection device, a throttle body, and an intake pipe are disposed between a cylinder assembly and an air cleaner in an upper part of a crankcase assembly. The throttle body is disposed on an opposite side in the vehicle width direction of the clutch chamber. | 04-07-2016 |
123580800 | Exhaust to next cylinder ready to fire | 7 |
20080202454 | Split-cycle engine with water injection - A split-cycle water injection engine includes a crankshaft rotatable about a crankshaft axis. A power piston is slidably received within a power/expansion cylinder and operatively connected to the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft. A crossover passage is operatively connected between the compression cylinder and the power/expansion cylinder and selectively operable to receive compressed air from the compression cylinder and to deliver compressed air to the power/expansion cylinder for use in transmitting power to the crankshaft during engine operation. Valves selectively control gas flow into and out of the compression and power cylinders. A water injector is associated with and adapted to inject water into at least one of the compression cylinders the crossover passage and the power cylinder during engine operation. | 08-28-2008 |
20090277402 | Air/Fuel Double Pre-Mix Self-Supercharging Internal Combustion Engine with at Least One Freewheeling Mechanism - The invention is directed to a novel self-supercharging internal combustion engine with two pairs of three pistons and cylinders. A self-supercharging internal combustion engine comprising: (a) a first piston and cylinder with intake and exhaust valves, the piston being connected to a crankshaft; (b) a second piston and cylinder with intake and exhaust valves, the piston being connected to the crankshaft; (c) a third piston and cylinder of a size which is at least double the size of the first and second pistons, the third piston having a valve which enables air and fuel to be drawn into the cylinder, the third cylinder being connected to the intake valves of the first and second pistons and cylinders, the third piston being connected to the same crankshaft as the first and second pistons, and a corresponding second set of three pistons and cylinders, the three pistons being connected to a second crankshaft, each crankshaft being interconnected by meshing gears. A freewheeling mechanism can be included with the first and/or second crankshaft. | 11-12-2009 |
20090283061 | Split-Cycle Four-Stroke Engine - An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater. | 11-19-2009 |
20100147236 | TANDEM TWIN POWER UNIT ENGINE HAVING AN OSCILLATING CYLINDER - An invention is provided for an internal combustion engine having a trunnion twin firing cylinder put in tandem for application of 4-6-8 cylinders as needed, including three moving parts, cylinder, piston rod, and crank that fires two pistons during up stroke while having a wet sump, cylinders are perpendicular to the crank and are enclosed at the bottom allowing four strokes every revolution with double firing pistons. The pistons do not require a wrist pin, and the pistons and rod assembly are one piece, pushing straight on the crank throw, eliminating piston side thrust, and reducing conical wear to rings with blow by. A conventional four cylinder engine at 1000 rpm fires 4,000 times in one minute. The trunnion twin firing cylinder engine with four pistons fires 8,000 times in one minute. | 06-17-2010 |
20120006288 | Cylinder Charge Temperature Control for an Internal Combustion Engine - A method is disclosed for operating an engine with a first cylinder providing a net flow of gases from the intake to the exhaust while combusting; and a second cylinder providing a net flow of gases from the exhaust to the intake. Both the first and second cylinders may carry out combustion during such operation. | 01-12-2012 |
20130139769 | Mackay Tri-expansion cycle engine utilizing an eight-stroke master cylinder and an eight-stroke slave cylinder - The present invention provides a Mackay tri-expansion cycle engine which operates with an eight-stroke master cylinder and an eight-stroke slave cylinder; the Mackay tri-expansion cycle engine intakes air and fuel into the eight-stroke master cylinder, and the air-fuel-mixture combusts in three expansion processes; the first expansion process generates power at high temperature with a hot-combustion-medium of high CO concentration; the second expansion process generates power with a cold-expansion-medium mixing from said hot-combustion-medium and a compressed air, spontaneously converting all CO content into CO | 06-06-2013 |
20150083060 | COMBUSTION AND VAPOR CYCLE LOBED ROTOR ENGINE - An internal combustion engine utilizing an additional vapor expansion piston/cylinder to capture traditionally rejected energy. Hot combustion gases from the combustion process are used to power an additional vapor expansion cycle in a separate cylinder from the combustion cycle. Comprised of at least two pistons/cylinders (one fuel combustion and one vapor expansion) diametrically opposed; where the reciprocal motion of the pistons is transferred to the output shaft via a multiple-lobed rotor assembly. | 03-26-2015 |
123580900 | Oscillating or reciprocating, nonpoppet valve | 1 |
20090314233 | Valve Assembly and Method for High Temperature Internal Combustion Engines - Valve assembly and method in which a valve member is connected to an elongated lever arm for controlling communication between two chambers in an internal combustion engine. The valve assembly is disposed at least partially within one of the chambers, and the valve member is moved between open and closed by an actuator connected to the lever arm. In some disclosed embodiments, a pilot valve is opened to equalize pressure on both sides of the valve member prior to moving the valve member toward the open position. In others, where a piston in an expansion cylinder is driven by hot, expanding gases from a separate combustion chamber, the exhaust valve is closed before the piston has completed its exhaust stroke, and pressure is allowed to build up in the expansion cylinder to a level corresponding to the pressure in the combustion chamber before the valve member is moved toward the open position. | 12-24-2009 |
123590100 | Rotary valve | 1 |
20140366818 | ROTARY VALVE INTERNAL COMBUSTION ENGINE - A rotary valve internal combustion engine has a piston connected to a crankshaft and reciprocatable in a cylinder, a combustion chamber being defined in part by the piston. The engine has a rotary valve rotatable in a valve housing fixed relative to the cylinder, the rotary valve having a valve body containing a volume defining, in part, the combustion chamber and further having a wall part thereof a port giving, during rotation of the valve, fluid communication successively to and from the combustion chamber via inlet and exhaust ports in the valve housing, wherein the rotary valve is rotatable about an axis parallel to the axis of rotation of the crankshaft, the valve being mounted in a bearing arrangement which restrains the valve from movement in the axial direction but permits movement in the radial direction. | 12-18-2014 |
123590600 | Multiple crankshafts | 1 |
20170234214 | POWER UNIT | 08-17-2017 |
123590700 | Two-stroke cycle | 1 |
20100258068 | Spark-ignition type cross-cycle internal combustion engine - The present invention provides a spark-ignition type cross-cycle internal combustion engine that can conduct the seven processes of the spark-ignition type cross-cycle operation with gasoline and bio-fuel and natural gas. | 10-14-2010 |