Class / Patent application number | Description | Number of patent applications / Date published |
095114000 | With plural indirect heat transfer steps on solid sorbent or gaseous fluid mixture or constituent thereof | 27 |
20080289497 | SYSTEMS AND METHODS FOR PROCESSING METHANE AND OTHER GASES - Systems and methods for processing methane and other gases are disclosed. A representative method in accordance with one embodiment includes directing a first portion of a gas stream through a first adsorbent while exchanging heat between a second adsorbent and a third adsorbent. The method can further include directing a second portion of the gas stream through the third adsorbent while exchanging heat between the first and second adsorbents. The method can still further include directing a third portion of the gas stream through the second adsorbent while exchanging heat between the first and third adsorbents. In further particular aspects, the adsorbent can be used to remove carbon dioxide from a flow of methane. In other particular aspects, a heat exchange fluid that is not in direct contact with the adsorbents is used to transfer heat among the adsorbents. | 11-27-2008 |
20090025555 | SORBENT FIBER COMPOSITIONS AND METHODS OF TEMPERATURE SWING ADSORPTION - The various embodiments of the present invention relate to compositions, apparatus, and methods comprising sorbent fibers. More particularly, various embodiments of the present invention are directed towards sorbent fiber compositions for temperature swing adsorption processes. Various embodiments of the present invention comprise sorbent fiber compositions, apparatus comprising a plurality of sorbent fibers, and methods of using the same for the capture of at least one component from a medium, for example CO | 01-29-2009 |
20090173225 | RECTANGULAR PARALLELEPIPED FLUID STORAGE AND DISPENSING VESSEL - A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character. | 07-09-2009 |
20100037773 | PROCESS FOR REMOVING POLAR COMPONENTS FROM A PROCESS STREAM TO PREVENT HEAT LOSS - A process and system for removing polar components from a process stream in a refinery process without cooling the process stream are disclosed. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur from the process stream. The process stream is processed within the first adsorber unit to remove sulfur containing contaminants. The process stream is processed with the first adsorber unit at substantially the same elevated temperature. The process stream is processed within the first adsorber unit by exposing the process stream to at least one of a metal oxide and a mixed metal oxide to remove the sulfur containing contaminants from the process stream and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be exposed to a stream of oxygen to regenerate the at least one of a metal oxide and a mixed metal oxide. The desulfurized process stream may be exposed to at least one of the regenerated metal oxide and regenerated mixed metal oxide to remove moisture from the desulfurized process stream. The desulfurized process stream is then fed through a second adsorber unit to remove contaminants containing nitrogen from the process stream. The process stream is processed within the second adsorber unit to remove nitrogen containing contaminants, where the process stream being processed at substantially the same elevated temperature. The process stream is processed within the second adsorber unit by exposing the process stream to at least one of a molecular sieve and zeolites to remove nitrogen containing contaminants from the process stream. | 02-18-2010 |
20110179948 | APPLICATION OF AMINE-TETHERED SOLID SORBENTS TO CO2 FIXATION FROM AIR - A method for capturing CO | 07-28-2011 |
20120210871 | SYSTEMS AND METHODS FOR PROCESSING METHANE AND OTHER GASES - Systems and methods for processing methane and other gases are disclosed. A representative method in accordance with one embodiment includes directing a first portion of a gas stream through a first adsorbent while exchanging heat between a second adsorbent and a third adsorbent. The method can further include directing a second portion of the gas stream through the third adsorbent while exchanging heat between the first and second adsorbents. The method can still further include directing a third portion of the gas stream through the second adsorbent while exchanging heat between the first and third adsorbents. In further particular aspects, the adsorbent can be used to remove carbon dioxide from a flow of methane. In other particular aspects, a heat exchange fluid that is not in direct contact with the adsorbents is used to transfer heat among the adsorbents. | 08-23-2012 |
20130206005 | GAS CLEANING UNIT AND METHOD FOR CLEANING GAS - A gas cleaning unit for cleaning a main raw gas stream from a plant comprises a plurality of gas cleaning chambers ( | 08-15-2013 |
20140216254 | Apparatus and Systems Having a Rotary Valve Assembly and Swing Adsorption Processes Related Thereto - Provided are apparatus and systems having a rotary valve assembly integrated with a reciprocating valve assembly to perform swing adsorption processes. The rotary valve assembly is utilized with the reciprocating valve assembly to manage the flow of streams through the system in an enhanced manner. | 08-07-2014 |
20150068397 | METHOD OF ADSORPTIVE GAS SEPARATION USING THERMALLY CONDUCTIVE CONTACTOR STRUCTURE - A method of adsorption allows separation of a first fluid component from a fluid mixture comprising at least the first fluid component in an adsorptive separation system having a parallel passage adsorbent contactor with parallel flow passages having cell walls which include an adsorbent material. The method provides for transferring heat from the heat of adsorption in a countercurrent direction along at least a portion of the contactor during adsorption and transferring heat in either axial direction along the contactor to provide at least a portion of the heat of desorption during a desorption step. A carbon dioxide separation process to separate carbon dioxide from flue gas also includes steps transferring heat from adsorption or for desorption along the parallel passage adsorbent contactor. | 03-12-2015 |
20150135951 | METHOD OF USING A STRUCTURED ADSORBENT BED FOR CAPTURE OF CO2 FROM LOW PRESSURE AND LOW PRESSURE CONCENTRATION SOURCES - A structured adsorbent sheet, is provided including a nano-adsorbent powder, and a binder material, wherein the nano-adsorbent powder is combined with the binder material to form an adsorbent material, and a porous electrical heating substrate, wherein the adsorbent material is applied to the porous electrical heating substrate thereby forming a structured adsorbent sheet. | 05-21-2015 |
20160096138 | Dehumidifier and Breather Configured for Operation During Regeneration - A dehydrator for dehydrating air supplied to a power related or mechanical device includes a first container configured to hold a desiccant, a first heater arranged with the first container configured to heat the desiccant in the first container, a second container configured to hold a desiccant, and a second heater arranged with the second container configured to heat the desiccant in the second container. The dehydrator further includes a conduit configured to selectively connect one of the first container and the second container to the power related or mechanical device and a controller configured to selectively operate one of the first heater and the second heater. | 04-07-2016 |
20160145518 | OXYGEN AND SULFUR TOLERANT ADSORBENT SYSTEM - A process for treating a gas stream, such as natural gas, comprising a process design that prevents the formation of undesired sulfur and sulfates from the reaction of oxygen and sulfur is disclosed. After water is removed from the gas stream, a portion of the dried gas stream is sent through a cooled adsorbent bed that has a first layer to remove sulfur compounds and then a layer to remove oxygen. There may be additional layers of adsorbent to remove other contaminants. The gas stream that is then heated to regenerate an adsorbent bed no longer contains sulfur and oxygen and undesirable reactions of sulfur and oxygen are avoided. | 05-26-2016 |
095115000 | Heating and cooling | 15 |
20080314245 | Process for removing a target gas from a mixture of gases by thermal swing adsorption - The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream. | 12-25-2008 |
20090158928 | SQUEEZABLE MOISTURE REMOVAL DEVICE - A moisture removal device for reducing the moisture content of air associated with an appliance including a body of moisture removing material, apparatus for moving air associated with the appliance into contact with the body, a heat sink for the body for the dissipating heat of condensation of moisture condensing on the body from air associated with the appliance, and an apparatus for deforming the body to regenerate the moisture capacity of the moisture removing material. The apparatus for deforming the body can compress, stretch, or twist the body of moisture removing material to mechanically remove liquid from the body. The moisture removal device can be part of a refrigerator, cooker hood, room air conditioner, dehumidifier, dishwasher, clothes dryer and a drying cabinet. | 06-25-2009 |
20090282975 | REMOVAL OF IMPURITIES FROM HYDROGEN-CONTAINING MATERIALS - Methods of purifying hydrogen-containing materials are described. The methods may include the steps of providing a purifier material comprising silica. The silica may be heated at temperature of about 100° C. or more in a dry atmosphere to form activated silica. The activated silica may be contacted with a starting hydrogen-containing material, where the activated silica reduces a concentration of one or more impurity from the starting hydrogen-containing material to form the purified hydrogen-containing material, and where the activated silica does not decompose the purified hydrogen-containing material. | 11-19-2009 |
20100218677 | METHODS AND SYSTEMS FOR PURIFYING GASES - The present invention relates to methods and systems for purifying gases, such as for example semiconductor process gases. The invention more particularly relates to fluid purification methods and systems having improved heat transfer capabilities and controls such that the purified fluid produced from the process contains reduced impurity levels and/or exhibits more uniform concentrations within the final product. In another aspect of the invention, the activation time for adsorbent beds used in such processes and systems can be reduced. | 09-02-2010 |
20110005393 | System and Method Extracting and Employing Compression Heat in Biogas Treatment Plant Equipment - The system and method for recycling and using the heat from compressed gas produced by a biogas treatment plant. The system includes a biogas cleaning stage and a plurality of compression and heat exchanger stages that allows the heat generated by compressed gases to be harvested. After the heat is harvested, it is delivered to a jacketed vessel containing media used to remove contaminants from the biogas. The media inside the jacketed vessel requires regeneration or stripping of harmful VOCs and other contaminants picked up from the biogas. The system also includes an inert gas generator that creates hot inert gas that is delivered to the jacketed vessel that heats the media located therein to remove contaminants. Because the jacket vessel and the media are simultaneously heated, the system's heat-up time is reduced The system also includes a heat exchanger that partially recovers the heat from the inert gas. | 01-13-2011 |
20110041689 | OFF GAS PURIFICATION - Heat-exchangers and biogas conditioners including a heat exchange member disposed between upper and lower flanges of the apparatus in which at least the heat exchange member is formed of a highly thermally conductive material (e.g., at least 50 W/m−K) such as aluminum or aluminum alloy. A bed of zeolite is loaded within the apparatus so as to be in contact with the heat exchange member. The heat exchange member is shaped and configured so that any given location of the zeolite bed is no more than about 3 inches from the heat exchange member comprising the highly thermally conductive material. | 02-24-2011 |
20110126705 | Process For Decreasing Or Eliminating Unwanted Hydrocarbon And Oxygenate Products Caused By Fisher Tropsch Synthesis Reactions In A Syngas Treatment Unit - The present invention provides a process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by FTS reactions in a syngas treatment unit by utilizing heat exchangers and optionally associated pipes that are substantially fabricated of a material selected from the group consisting of chromium containing alloys and carbon steel for heating up gas streams having a carbon monoxide partial pressure greater than one bar obtained from a front end purification unit/cold box unit. | 06-02-2011 |
20110126706 | Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air - A hydrocarbon adsorbent that includes a zeolite with either a H-FER structure or a MOR structure in which the pore diameter has been adjusted by ion exchange. A propane adsorbent that includes a zeolite with a MFI structure. A hydrocarbon removal unit that includes a TSA pre-purification unit having a column packed with sequential layers of activated alumina, a NaX zeolite, and the hydrocarbon adsorbent. A method of reducing the hydrocarbon content within liquid oxygen inside a cryogenic air separation unit that includes purifying feed air with the above pre-purification unit. | 06-02-2011 |
20120060688 | APPARATUS AND PROCESS FOR SEPARATING HYDROGEN ISOTOPES - The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock. | 03-15-2012 |
20130081539 | METHODS AND SYSTEMS FOR PURIFYING GASES - The present invention relates to methods and systems for purifying gases, such as for example semiconductor process gases. The invention more particularly relates to fluid purification methods and systems having improved heat transfer capabilities and controls such that the purified fluid produced from the process contains reduced impurity levels and/or exhibits more uniform concentrations within the final product. In another aspect of the invention, the activation time for adsorbent beds used in such processes and systems can be reduced. | 04-04-2013 |
20130269524 | ZEOLITE COMPOSITION ADAPTED FOR AIR PURIFICATION - The invention relates to an adsorbent zeolite-based material comprising for 100 mass % an amount different from zero of a zeolite selected from X zeolites or LSX zeolites; the balance up to 100 mass % consisting of an amount different from zero of a cation-exchanged zeolite, said cation-exchanged zeolite being selected from cation-exchanged X zeolites and cation-exchanged LSX zeolites. | 10-17-2013 |
20140190349 | DEHYDRATION EQUIPMENT, GAS COMPRESSION SYSTEM, AND DEHYDRATION METHOD - In a dehydration equipment, a regenerative gas heater heats a portion of CO | 07-10-2014 |
20140366725 | THERMALLY INTEGRATED ADSORPTION-DESORPTION SYSTEMS AND METHODS - High volumetric-efficiency thermally integrated systems for capturing a target gas from a process gas stream include a monolithic body and a distribution system. The monolithic body includes a first plurality of channels and a second plurality of channels each having sorbent surfaces that reversibly adsorb the target gas. The channels are in thermal communication such that heat from an exothermic adsorption of target gas in one plurality of channels is used by an endothermic desorption of target gas from the other plurality of channels. Methods for separating a target gas from a process gas stream include switching the high volumetric-efficiency thermally integrated systems between a first state and a second state. In the first state, the first plurality of channels undergoes desorption while the second undergoes adsorption. In the second state, the second plurality of channels undergoes desorption while the first plurality undergoes adsorption. | 12-18-2014 |
20150135952 | RTSA METHOD USING ADSORBENT STRUCTURE FOR CO2 CAPTURE FROM LOW PRESSURE AND LOW CONCENTRATION SOURCES - A Temperature Swing Adsorption method for separating a first component, comprising a more adsorbable component, from a feed stream comprising more than 50 mol % of a second component, comprising a less adsorbable component, is provided. The method includes providing an adsorbent structure suitable for adsorbing the first component, the structure being of the parallel passage contactor type, and cyclically implementing the following steps. Passing the feed stream through the adsorbent structure thus adsorbing the first component and producing a stream depleted in the first component and enriched in the second component. Heating the adsorbent structure to desorb the adsorbed first component by means of circulating a heating stream enriched in the first component at a temperature suitable for regeneration. And cooling the structure by means of passing through it more than 50% of the stream enriched in the second component produced in the step a). | 05-21-2015 |
20190143258 | SYSTEMS AND METHODS FOR CLOSED-LOOP HEATING AND REGENERATION OF SORBENTS | 05-16-2019 |