Class / Patent application number | Description | Number of patent applications / Date published |
095052000 | Water vapor permeates barrier | 25 |
20080223212 | Reducing moisture content of compressed air - A system and method for removing moisture from compressed air with the system having a membrane for passage of water vapor therethrough while preventing the flow of air therethrough and a diverter for diverting and reducing the pressure of a portion of the compressed air to enable the air at a reduced pressure to flow past one side of the membrane while the compressed air flows by the opposite side of the membrane to allow water vapor from the compressed air to pass through the membrane to the compressed air at the reduced pressure thereby providing for on-the-go reduction of amount of moisture in the compressed air. | 09-18-2008 |
20090007780 | METHOD OF DEHYDRATION, DEHYDRATING APPARATUS, AND MEMBRANE REACTOR - A dehydration method by which water is selectively separated from a water-containing mixture | 01-08-2009 |
20090205490 | METHOD AND APPARATUS FOR HUMIDIFYING AIR WITH WATER VAPOR EXTRACTED FROM MOISTURE-LADEN FLUE GAS - A method and apparatus for humidifying air in which the first side of a permselective water transport membrane is contacted with water vapor laden flue gas from a combustion process having a first water vapor partial pressure and a first temperature and at least a portion of the water vapor is condensed, producing condensed water. The condensed water is transported through the membrane to the opposite side of the membrane, which is contacted with an air stream having a second water vapor partial pressure, which second water vapor partial pressure is less than the first water vapor partial pressure, and having a second temperature, which second temperature is less than the first temperature. Upon contact with the air stream, the condensed water evaporates into the air stream, resulting in a humidified air stream. | 08-20-2009 |
20100018393 | HUMIDIFICATION EXCHANGER WITH A CLEANING SYSTEM - A humidity exchanger for exchanging humidity between a first air stream and a second air stream contains a first cavity and a second cavity, which are separated by a structure permeable to water vapor, the first cavity configured to have the first air stream flow through it and a second cavity configured to have the second air stream flow through it. The humidity exchanger also contains a cleaning system having a cleaning module, which provides a liquid, vaporized, or gaseous cleaning fluid to clean the first cavity and/or the second cavity using the cleaning fluid. The cleaning may be supported using shockwaves, soundwaves, and/or ultrasound waves. | 01-28-2010 |
20100031817 | ENHANCED HVAC SYSTEM AND METHOD - Particular embodiments disclosed herein relate to methods, compositions, and systems relating generally to heating, ventilation, and air conditioning (HVAC) systems, and more specifically, to HVAC systems that transfer sensible and/or latent energy between air streams, humidify and/or dehumidify air streams. In certain embodiments, a polymeric membrane is utilized for fluid exchange, with or without an additional support. Certain embodiments allow for individual regulation of air temperature and humidity. | 02-11-2010 |
20100126342 | POLYMER INORGANIC CLAY COMPOSITES - The instant invention generally provides polymer inorganic clay composite comprising a molecularly self-assembling material and an inorganic clay, and a process of making and an article comprising the polymer inorganic clay composite. | 05-27-2010 |
20100319535 | HIGH-TEMPERATURE, STEAM-SELECTIVE MEMBRANE - A high-temperature, steam-selective membrane for adding steam to or removing steam from various types of chemical reactions is disclosed herein. In one embodiment, such a membrane includes a polymer layer (a Nafion or sulfonated PEEK polymer layer, for example) exhibiting high selectivity to the transport of steam relative to other gas species. The polymer layer is sandwiched between substantially rigid porous layers that are steam permeable. The rigid porous layers substantially immobilize the polymer layer and reduce the tendency of the polymer layer to shrink and/or expand in response to changes in temperature or humidity. The rigid porous layers may also retain water to keep the polymer layer moist. The physical support and moisture retention provided by the rigid porous layers enable the polymer layer to operate in a temperature range of about 100° C. to 500° C. | 12-23-2010 |
20110000367 | POLYIMIDE GAS SEPARATION MEMBRANE AND GAS SEPARATION METHOD - Disclosed are a gas separation membrane and a gas separation method in which at least one species of organic vapor is separated and recovered from an organic vapor mixture using the gas separation membrane. The gas separation membrane is made of an aromatic polyimide composed of a tetracarboxylic acid component consisting of an aromatic ring-containing tetracarboxylic acid and a diamine component comprising 10 to 90 mol % of a combination of (B1) 3,4′-diaminodiphenyl ether and (B2) 4,4′-diaminodiphenyl ether at a B1 to B2 molar ratio, B1/B2, ranging from 10/1 to 1/10, and 10 to 90 mol % of other aromatic diamine. | 01-06-2011 |
20120118145 | SYSTEM AND METHOD FOR EFFICIENT AIR DEHUMIDIFICATION AND LIQUID RECOVERY - The present invention relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions. | 05-17-2012 |
20120118146 | SYSTEM AND METHOD FOR EFFICIENT MULTI-STAGE AIR DEHUMIDIFICATION AND LIQUID RECOVERY - The present invention relates to systems and methods for dehumidifying air by establishing humidity gradients in a plurality of dehumidification units, which are arranged in series and/or in parallel. Water vapor from air entering each stage of the plurality of dehumidification units is extracted by the dehumidification units without substantial condensation into low pressure water vapor chambers. For example, in one embodiment, the water vapor is extracted through water vapor permeable membranes of the dehumidification units into the low pressure water vapor chambers. As such, the air exiting each of the dehumidification units is less humid than the air entering the dehumidification units. The low pressure water vapor extracted from the air is subsequently compressed to a slightly higher pressure (i.e., just high enough to facilitate condensation), condensed, and removed from the system at ambient conditions. | 05-17-2012 |
20120118147 | SYSTEMS AND METHODS FOR AIR DEHUMIDIFICATION AND COOLING WITH MEMBRANE WATER VAPOR REJECTION - The present disclosed embodiments relate to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial membrane water vapor rejection into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently expelled through a membrane vapor rejection unit to ambient conditions. | 05-17-2012 |
20120118148 | SYSTEMS AND METHODS FOR AIR DEHUMIDIFICATION AND SENSIBLE COOLING USING A MULTIPLE STAGE PUMP - The present disclosure relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions. | 05-17-2012 |
20130055892 | METHOD OF PRODUCING HIGH PURITY STEAM - Methods for the purification of steam, systems for purifying steam, methods for measuring and/or controlling steam flow rates, and uses for purified steam are provide. Also provided are substantially gas-impermeable membranes, such as perfluorinated ionomers (e.g., perfluoroethylene-sulfonic-acid/tetrafluoroethylene membranes), having a high ratio of water vapor permeation relative to gas permeation through the membrane. Also provided are methods of operation of such membranes at relatively high operating temperatures for the purification of steam and for operation of such membranes at relatively low temperature and sub-atmospheric pressures for the purification of steam. In a preferred embodiment, the system | 03-07-2013 |
20130199370 | Steam Permselective Membrane, and Method Using Same for Separating Steam from Mixed Gas - A steam permselective membrane containing a crosslinked hydrophilic polymer is provided. The steam permselective membrane may further contain at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound. | 08-08-2013 |
20130298766 | FLUID TREATMENT SYSTEMS AND METHODS USING SELECTIVE TRANSFER MEMBRANES - Systems and methods for cooling and/or separating a component from a fluid are disclosed herein. Such systems and methods can include one or more of a separator (e.g., a dehumidifier), a chiller, and/or an expirator, each of which can include a selective transfer membrane. Such systems and methods can be used for a wide variety of applications including, for example, cooling and/or dehumidifying air. | 11-14-2013 |
20140144318 | SYSTEMS AND METHODS FOR MULTI-STAGE AIR DEHUMIDIFICATION AND COOLING - The present disclosure relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions. | 05-29-2014 |
20140150649 | SYSTEM FOR SUPPLYING AN AIRCRAFT WITH INERT GAS, METHOD FOR SUPPLYING AN AIRCRAFT WITH INERT GAS, USE OF A MEMBRANCE AND AIRCRAFT - A system for supplying an aircraft with inert gas is provided. The system includes at least one fuel cell with an air inlet and an exhaust air outlet as well as a membrane device with an inlet, an outlet and a vapor-permeable membrane. The exhaust air outlet is in fluid communication with the inlet of the membrane device. The membrane device guides a gas from the inlet to the outlet and to give off to the outside through the membrane any water vapor contained therein. This leads to a cost efficient, passive and reliable dehumidifaction of inert exhaus gas for inerting purposes, and a dehumidification device that does not or only marginally increases the weight of the aircraft. | 06-05-2014 |
20140157985 | Dehumidification Systems and Methods Thereof - An apparatus for removing water vapor from a feed gas is provided that comprises a membrane housing, a membrane that divides a first pressure side and a second pressure side of the membrane housing, a feed gas inlet and outlet on the first pressure side, a sweep gas inlet and outlet on the second pressure side, a sweep gas flow regulator, and a pump. In some embodiments the feed gas can be at ambient pressure and a pressure drop across the membrane can be less than about 1 atm. In some embodiments the sweep gas can be a portion of the feed gas exiting the first pressure side. Some embodiments are part of air conditioning, drying, or water recovery systems. Additionally, some embodiments achieve dew points of less than 0° C. and dehumidification efficiencies of 200% to 600%. | 06-12-2014 |
20140238235 | MEMBRANE DEVICE AND PROCESS FOR MASS EXCHANGE, SEPARATION, AND FILTRATION - A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams. | 08-28-2014 |
20140331860 | CERAMIC SEPARATION MEMBRANE AND DEHYDRATION METHOD - There is disclosed a ceramic separation membrane. This ceramic separation membrane includes a porous substrate, and a separation layer formed on the substrate. The separation layer is a laminate having an outermost layer positioned on the most surface side, and a base layer positioned in a lower layer than the outermost layer and made of zeolite. The outermost layer is a layer made of a siliceous material containing 90 mol % or more of silica, an organic material-containing amorphous silica material having a Si-Cn-Si (wherein n is 1 or 2) bond and a Si/C ratio of 0.5 to 2, or a carbonaceous material containing 90 mass % or more of carbon. The outermost layer is different from the base layer. | 11-13-2014 |
20160023159 | Method and Apparatus for Separating One or More Components from a Composition - The present invention relates to methods of separating one or more components from a feed composition, methods of desorbing one or more components from an absorbent fluid, as well as systems and apparatus that can carry out the methods. In one embodiment, the present invention provides a method of separating one or more components from a feed composition including contacting at least some of a first component of a feed composition including the first component with an absorbent fluid, to provide a contacted composition and a used absorbent fluid including at least some of the first component contacted with the absorbent fluid. In some embodiments the absorbent fluid can be an organosilicon fluid including an organosilicon including at least one of a hydroxy group, an ether group, an acrylate group, a methacrylate group, an acrylamide group, a methacrylamide group, and a polyether group. In some embodiments, during the contacting the feed composition can be contacted to a first side of a membrane while the absorbent fluid is contacted to a second side of the membrane. In some embodiments, the membrane can be a silicone membrane. | 01-28-2016 |
20160138817 | FLEXIBLE LIQUID DESICCANT HEAT AND MASS TRANSFER PANELS - Provided are flexible panel devices that use desiccants for heat and mass transfer processes, including but not limited to air conditioning systems, for example, liquid desiccant air conditioning (LDAC) applications wherein the liquid desiccant is contained in a panel that comprises at least one hydrophobic separation layer, which allows water vapor transfer between the air and liquid desiccant and enable dehumidification and humidification of the air. The flexible panel devices can be installed on an absorber (conditioner) side or a desorber (regenerator) side or both of a LDAC system. The devices have two flexible layers, at least one of which comprises a flexible and water vapor permeable hydrophobic separation layer, that form a desiccant flow channel and a desiccant flow distributor located therein. The two flexible layers may both be permeable hydrophobic separation layers, or they may comprise one permeable hydrophobic separation layer along with a non-porous layer. | 05-19-2016 |
20160158694 | FLUID TREATMENT SYSTEMS AND METHODS USING SELECTIVE TRANSFER MEMBRANES - Systems and methods for cooling and/or separating a component from a fluid are disclosed herein. Such systems and methods can include one or more of a separator (e.g., a dehumidifier), a chiller, and/or an expirator, each of which can include a selective transfer membrane. Such systems and methods can be used for a wide variety of applications including, for example, cooling and/or dehumidifying air. | 06-09-2016 |
20160175767 | CARBON MEMBRANE, PROCESS FOR THE MANUFACTURE OF CARBON MEMBRANES AND USE THEREOF | 06-23-2016 |
20170232385 | DEHUMIDIFYING AND HUMIDIFYING DEVICE | 08-17-2017 |