Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


At 300 degrees C or greater

Subclass of:

075 - Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures

075330000 - PROCESSES

075343000 - Producing or purifying free metal powder or producing or purifying alloys in powder form (i.e., named or of size up to 1,000 microns in its largest dimension)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
075363000 At 300 degrees C or greater 32
20080314202Combustion Reactors for Nanopowders, Synthesis Apparatus for Nanopowders with the Combustion Reactors, and Method of Controlling the Synthesis Apparatus - The present invention relates to a combustion reactor for nanopowders, a synthesis apparatus for nanopowers using the combustion reactor, and a method of controlling the synthesis apparatus. The combustion reactor for nanopowders comprises an oxidized gas supply nozzle connected to an oxidized gas tube; a gas supply unit supplying a fuel gas and a precursor gas; and a reaction nozzle forming concentricity on an inner wall of the oxidized gas supply nozzle to be connected to the gas supply unit and having an inlet opening for supplying an oxidized gas disposed at a region adjacent to a jet orifice for spraying flames. In the present invention, it is possible to precisely control the stability of flames, the uniform temperature distribution of flames and the temperature of flames that affect the properties of nanopowders, and the deposition of oxide in the combustion reactor is prevented to thus enable a continuous and uniform reaction for a long time, thereby enabling an economic and efficient synthesis of nanopowders.12-25-2008
20100031774Apparatus and method for manufacturing metal nanoparticles - The present invention relates to an apparatus and a method of manufacturing metal nanoparticles, and more particularly to an apparatus including: a precursor supplying part which supplies a precursor solution of metal nanoparticles; a first heating part which is connected with the precursor supplying part, includes a reactor channel having a diameter of 1 to 50 mm, and is heated to the temperature range where any particle is not produced; a second heating part which is connected with the first heating part, includes a reactor channel having a diameter of 1 to 50 mm, and is heated to the temperature range where particles are produced; and a cooler which is connected with the second heating part and collects and cools metal nanoparticles produced at the second heating part which allows continuous mass production of metal nanoparticles.02-11-2010
20110005353Magnetic metal powder and method of producing the powder - A magnetic metal powder having fluidity is provided which is composed of FePt nanoparticles synthesized by the polyol synthesis method that possess fct (face-centered tetragonal) structure and exhibit crystal magnetic anisotropy from immediately after synthesis. Specifically, there is provided a magnetic metal powder having fluidity which is composed of magnetic metal particles whose main components and the contents thereof are represented by the following general formula (1):01-13-2011
20110023656METHOD FOR PRODUCING GRANULAR METALLIC IRON - A method for producing granular metallic iron by heating and reducing a raw material mixture which includes an iron oxide-containing material, a carbonaceous reductant and a Li02-03-2011
20110113925METHOD OF AND SYSTEM FOR PROCESSING RED MUD - A method of and system for processing red mud, the method comprising the step of heating red mud to form at least molten slag, and preferably at least molten iron and molten slag.05-19-2011
20120137829Magnet Recycling - The present invention discloses a method for recovering rare earth particulate material from an assembly comprising a rare earth magnet and comprises the steps of exposing the assembly to hydrogen gas to effect hydrogen decrepitation of the rare earth magnet to produce a rare earth particulate material, and separating the rare earth particulate material from the rest of the assembly.06-07-2012
20130000449TITANIUM POWDER PRODUCTION PROCESS - The invention provides a crystalline Ti powder produced in a molten salt medium, said powder comprising predominantly particles of single α-Ti crystals that are directly applicable in powder metallurgy. The invention extends to continuous process for the production of titanium powder in a molten salt medium by known reaction mechanisms, said process including the steps of reacting in a first reaction zone in a molten salt TiCl4 with reactants selected from Ti particles, a substoichiometric quantity of reducing agent, and a mixture of titanium metal and a substoichiometric amount of reducing agent, to form Ti sub-chloride, transferring Ti sub-chloride containing salts from the first reaction zone into a second reaction zone, which is electrically, ionically, or both electrically and ionically isolated from the first reaction zone, reacting in the second reaction zone the Ti sub-chloride with molten reducing metal to form dispersed Ti powder and molten salt, and withdrawing a portion of a suspension of Ti powder in molten salt from the second reaction zone to downstream processing units to separate the Ti powder from the salt and optionally recycle a portion of said Ti powder in molten salt to the first reaction zone. The invention further extends to an apparatus for the process of the invention.01-03-2013
20130074654PROCESS FOR PRODUCING GRANULAR METAL - A technique that further improves the process for producing granular metal involves heating agglomerates and reducing and melting a metal oxide in the agglomerates. The process includes feeding agglomerates containing a metal oxide and a carbonaceous reducing agent onto a hearth of a moving hearth reduction melting furnace, heating the agglomerates to reduce and to melt the metal oxide, cooling the granular metal obtained by the heating, and discharging the cooled granular metal out of the furnace to recover the same. The agglomerates have an average diameter of not smaller than 17.5 mm are fed onto the hearth when the agglomerates are heated at a spread density of not lower than 0.5 on the hearth.03-28-2013
20130091987POLLUTION-FREE METHOD FOR RECYCLING IRON-BASED GRINDING WASTE - The invention provides a pollution-free reuse method for iron-based grinding waste, involving the technology of recycling economy, with special reference to the metallurgical industry, iron-based grinding waste green recycling technology. The present invention of the iron grinding waste recycling and reuse methods includes degreasing, heat treatment, sieving, matching, and obtains iron-based alloyed powders, which can be used in SHS lined steel pipe, powder metallurgy structural component, magnetic grinding, thermal spray. More than 95% iron-based alloyed powders can be recycled from wide source of iron-based grinding waste. The invention has the advantage of low cost, no secondary pollution and wide application.04-18-2013
20130098204METHOD FOR PRODUCING GRANULAR METALLIC IRON - The present invention provides a method for producing a granular metallic iron in which an adhesion inhibitor leveler, an agglomerate leveler, a discharger, and the physical state of materials present on the hearth are optimized to thereby enable agglomerate to be spread in a single layer. The agglomerate hence is evenly heat-treated to enable high-quality granular metallic iron to be produced in satisfactory yield.04-25-2013
20130263699Magnet Recycling - The present invention discloses a method for recovering rare earth particulate material from an assembly comprising a rare earth magnet and comprises the steps of exposing the assembly to hydrogen gas to effect hydrogen decrepitation of the rare earth magnet to produce a rare earth particulate material, and separating the rare earth particulate material from the rest of the assembly.10-10-2013
20160194733PRODUCING A TITANIUM PRODUCT07-07-2016
075364000 Combined with step at less than 300 degrees C using nonmetallic material which is liquid under standard conditions 6
20100031775METHOD FOR PREPARING NICKEL NANOPARTICLES - Provided is a method for preparing nickel nanoparticles capable of easily controlling particle sizes and shapes of the nickel nanoparticles and obtaining a high yield of the nickel nanoparticles using a process that is simpler than methods used to mass-produce the nickel nanoparticles. The method for preparing nickel nanoparticles may be useful to prepare nickel nanoparticles by mixing a nickel precursor and organic amine to prepare a mixture and heating the mixture.02-11-2010
20100275729Method for manufacturing metal nanoparticles comprising rod-shaped nanoparticles - The present invention relates to a method for manufacturing metal nanoparticles containing rod-shaped nanoparticles, the method including: producing metal oxide nanoparticle intermediates having at least rod-shaped metal oxide nanoparticles by heating a mixture of a nonpolar solvent, a metal precursor and an amine including secondary amine at 60-300° C.; producing metal nanoparticles by adding a capping molecule and a reducing agent to the mixture and heating the result mixture at 90-150° C.; and recovering the metal nanoparticles.11-04-2010
20100282022Method for manufaturing copper-based nanoparticles - The present invention relates to a method for manufacturing copper-based nanoparticles, in particular, to a method for manufacturing copper-based nanoparticles, wherein the method includes producing CuO nanoparticles by mixing CuO micropowder and alkylamine in a nonpolar solvent and heating the mixture at 60-300° C.; and producing copper-based nanoparticles by mixing a capping molecule and a reducing agent with the CuO nanoparticles and heating the mixture at 60-120° C.11-11-2010
20100313710METHOD AND APPARATUS FOR MANUFACTURING GRANULAR METALLIC IRON - A method for manufacturing granular metallic iron by reducing a raw material mixture including an iron oxide-containing material and a carbonaceous reducing agent, comprises: a step of charging the raw material mixture onto a hearth of a moving hearth-type thermal reduction furnace; a step of reducing the iron oxide in the raw material mixture by the carbonaceous reducing agent through the application of heat, thereby forming metallic iron, subsequently melting the metallic iron, and coalescing the molten metallic iron to granular metallic iron while separating the molten metallic iron from subgenerated slag; and a step of cooling the metallic iron to solidify; wherein the heat-reducing step includes a step of controlling the flow velocity of atmospheric gas in a predetermined zone of the furnace within a predetermined range. This method makes it possible to manufacture the granular metallic iron of high quality.12-16-2010
075365000 Step at 300 degrees C or greater after step at less than 300 degrees C using nonmetallic material which is liquid under standard conditions 2
20090095131METHOD FOR PRODUCING MOLYDENUM METAL POWDER - Method for producing molybdenum metal powder. The invention includes introducing a supply of ammonium molybdate precursor material into a furnace in a first direction and introducing a reducing gas into a cooling zone in a second direction opposite to the first direction. The ammonium molybdate precursor material is heated at an initial temperature in the presence of the reducing gas to produce an intermediate product that is heated at a final temperature in the presence of the reducing gas, thereby creating the molybdenum metal powder comprising particles having a surface area to mass ratio of between about 1 m04-16-2009
20120024110POWDER PROCESSING METHOD - A powder processing method includes degassing a metallic powder in a rotating chamber that is evacuated to a sub-atmospheric pressure. The method may also include storing the metallic powder in a rotating storage chamber that is pressurized to a super-atmospheric pressure with a dry cover gas.02-02-2012
075366000 Utilizing a fluidized bed 2
20100064852METHOD FOR PURIFICATION OF METAL BASED ALLOY AND INTERMETALLIC POWDERS - This invention relates to a method for purifying metal alloy and intermetallic powders. Particularly, the present invention relates to a method for the reduction or elimination of the content of the dissolved oxygen and to remove the metal oxide inclusions from metal alloy and intermetallic powders including the steps of: a) placing the metal in powder form into a reaction apparatus; b) introducing a suitable carrier substance to the metal powder; and c) introducing calcium vapour into the reaction apparatus to create a reaction between the metallic powder and calcium vapour thereby removing inclusions in the metal as shown in FIG. 03-18-2010
20100307291REDUCTION OF METAL CHLORIDE - A method of recovering silver from a silver chloride mixture in which hydrogen gas is passed through the mixture to produce a metal chloride hydride which is then heated to dissociate the metal and to release hydrogen chloride gas.12-09-2010
075367000 Vaporizing or condensing free metal 2
20100282023SYSTEM AND METHOD OF PRODUCING AND SEPARATING METALS AND ALLOYS - A system and method of producing an elemental material or an alloy from a halide of the elemental material or halide mixtures. The vapor halide of an elemental material or halide mixtures are introduced into a liquid phase of a reducing metal of an alkali metal or alkaline earth metal or mixtures thereof present in excess of the amount needed to reduce the halide vapor to the elemental material or alloy resulting in an exothermic reaction between the vapor halide and the liquid reducing metal. Particulates of the elemental material or alloy and particulates of the halide salt of the reducing metal are produced along with sufficient heat to vaporize substantially all the excess reducing metal. Thereafter, the vapor of the reducing metal is separated from the particulates of the elemental material or alloy and the particulates of the halide salt of the reducing metal before the particulate reaction products are separated from each other.11-11-2010
20130255443TITANIUM METAL PRODUCTION APPARATUS AND PRODUCTION METHOD FOR TITANIUM METAL - A titanium metal production apparatus is provided with (a) a first flow channel that supplies magnesium in a state of gas, (b) a second flow channel that supplies titanium tetrachloride in a state of gas, (c) a gas mixing section in which the magnesium and titanium tetrachloride in a state of gas are mixed and the temperature is controlled to be 1600° C. or more, (d) a titanium metal deposition section in which particles for deposition are arranged so as to be movable, the temperature is in the range of 715 to 1500° C., and the absolute pressure is 50 kPa to 500 kPa, and (e) a mixed gas discharge section which is in communication with the titanium metal deposition section.10-03-2013
075369000 Purifying powdered metal or reducing powdered metal compound to free metal 10
20080223175Method of Making Nanocrystalline Tungsten Powder - There is described a method of making a nanocrystalline tungsten powder that comprises: (a) heating a tungsten-containing material in a reducing atmosphere at an intermediate temperature of from about 600° C. to about 700° C. for an intermediate time period; the tungsten-containing material being selected from ammonium paratungstate, ammonium metatungstate or a tungsten oxide; and (b) increasing the temperature to a final temperature of about 800° C. to about 1000° C. for a final time period.09-18-2008
20100024598PROCESS FOR THE TREATMENT OF CONTAMINATED METAL RESIDUES AND APPARATUS FOR IMPLEMENTING IT - Process and apparatus for the treatment of divided metal residues contaminated by one or more organic compounds, comprising: mixing, inside a chamber, of said metal residues with at least one calcium/magnesium compound capable of reacting exothermically with water; exothermic reaction of said at least one calcium/magnesium compound with the water that the metal residues contain; rise in temperature of the metal residues subject to an exothermic reaction; dehydration of said metal residues during this exothermic reaction; oxidation of the organic compounds during said mixing, by bringing the metal residues contaminated by one or more organic compounds mixed with said at least one calcium/magnesium compound into contact with a gas stream containing at least partly oxygen; and removal from the chamber of a handleable dehydrated treated product having a residual content of organic compounds of less than 1% by weight of said treated product.02-04-2010
20100147110METHOD OF PRODUCING ULTRA-FINE METAL PARTICLES - A method of producing ultra-fine metal particles of the present invention includes: blowing metal powders of raw materials into reducing flame formed by a burner 06-17-2010
20100326239Process for Preparing Tantalum Powder for Capacitors - The present invention provides a process for preparing a tantalum powder with high specific capacity, which process comprising the steps of, in sequence, (1) a first reduction step: mixing tantalum oxide powder and a first reducing agent powder homogenously, and then carrying out reduction reaction in hydrogen and/or inert gas or vacuum atmosphere to obtain a tantalum suboxides powder; (2) a second reduction step: mixing the tantalum suboxides powder obtained from the step (1), in which impurities have been removed, and a second reducing agent powder homogenously, and then carrying out reduction reaction in hydrogen and/or inert gas or vacuum atmosphere to obtain a tantalum powder having high oxygen content; (3) a third reduction step: mixing the tantalum powder having high oxygen content obtained from the step (2), in which impurities have been removed, with a third reducing agent powder homogenously, and then carrying out reduction reaction in hydrogen and/or inert gas or vacuum atmosphere to obtain a tantalum metal powder suitable for capacitors; wherein after each reduction step, the oxidation product of reducing agent and the residual reducing agent are removed from the reaction product.12-30-2010
20110023657PROCESS FOR PRODUCING REDUCED IRON PELLETS, AND PROCESS FOR PRODUCING PIG IRON - In a method for producing a reduced iron pellet, when a powder formed article including iron oxide and carbon is heated and reduced in a rotary hearth furnace, a formed article produced using a raw material, in which an average diameter of the iron oxide is 50 microns or less and a ratio of carbon monoxide to carbon dioxide in a reduction zone is from 0.3 to 1, is reduced at a temperature of 1400° C. or less, thereby producing a reduced iron pellet in which a metallization ratio of iron is 50 to 85% and a ratio of residual carbon is 2% or less.02-03-2011
20110162484INTEGRATED METHOD FOR PRODUCING CARBONYL IRON POWDER AND HYDROCARBONS - Integrated process, in which pure carbonyl iron powder (CIP) is prepared by decomposition of pure iron pentacarbonyl (IPC) in a plant A, carbon monoxide (CO) liberated in the decomposition of the IPC is used in plant A for the preparation of further CIP from iron or is fed to an associated plant B for the preparation of synthesis gas or is fed to an associated plant C for the preparation of hydrocarbons from synthesis gas, and the CIP prepared in plant A is used as catalyst or catalyst component in an associated plant C for the preparation of hydrocarbons from synthesis gas from plant B.07-07-2011
20120042750PROCESS FOR PRODUCING MAGNETIC METAL PARTICLES FOR MAGNETIC RECORDING, AND MAGNETIC RECORDING MEDIUM - The present invention relates to a process for producing magnetic metal particles for magnetic recording, comprising:02-23-2012
20130125706METHOD FOR PREPARING TITANIUM POWDER WITH LOW OXYGEN CONCENTRATION - Disclosed is a method for preparing low-oxygen titanium powders. The method includes (a) separately placing titanium base powders and calcium in a deoxidation container, (b) deoxidizing the titanium base powders by heating an inner part of the deoxidation container at a temperature of 850° C. to 1050° C. so that the calcium is evaporated to make contact with the titanium base powders, (c) removing calcium oxide from surfaces of titanium powders, which are obtained by deoxidizing the titanium base powders in step (b), by washing the titanium powders, and (d) drying the titanium powders subject to the removing of the calcium oxide in step (c).05-23-2013
20140144291METHOD OF PRODUCING LOW OXYGEN-CONTENT MOLYBDENUM POWDER BY REDUCING MOLYBDENUM TRIOXIDE - Disclosed is a method of producing low oxygen-content molybdenum powders by reducing molybdenum trioxide, which includes charging a first reducing agent and the molybdenum trioxide, which are in the direct contact with each other on a micro-sieve on an upper portion of a bracket in a body, charging a second reducing agent in the bracket under the micro-sieve, coupling the body with a cover to close the body, and performing a reduction reaction by raising an internal temperature of the body by performing the first reduction reaction due to direct contact between the first reducing agent and the molybdenum trioxide, and performing the second reduction reaction due to evaporation of the second reducing agent. The first and second reduction reactions are performed at a temperature in a range of 550° C. to 650° C., and a temperature in a range of 1000° C. to 1200° C., respectively.05-29-2014
20180021857METHOD OF PREPARING TUNGSTEN METAL MATERIAL AND TUNGSTEN TARGET WITH HIGH PURITY01-25-2018

Patent applications in class At 300 degrees C or greater

Patent applications in all subclasses At 300 degrees C or greater

Website © 2025 Advameg, Inc.