Class / Patent application number | Description | Number of patent applications / Date published |
075345000 | Utilizing electrothermic, magnetic, or wave energy | 47 |
20080216604 | Method for Manufacturing Nanostructured Powder by Wire Explosion in Liquid and Device for Manufacturing the Same - The present invention relates to a method for manufacturing the nanostructured powder by a wire explosion in liquid and a device for manufacturing the same. To be more specific, the object of the invention is to provide a method for manufacturing the nanostructured powder by a wire explosion in liquid and a device for manufacturing the same, in which, a metal wire ( | 09-11-2008 |
20080271569 | CAVITATION PROCESS FOR TITANIUM PRODUCTS FROM PRECURSOR HALIDES - A titanium halide and, optionally, other precursor halides compound are reduced to a predetermined titanium product, suitably at or near ambient conditions. Titanium tetrachloride, for example, is added to an anhydrous liquid reaction medium containing one or more alkali metals or alkaline earth metals as reductants. The metal reductants are dispersed as very small globules in the liquid by cavitation of the liquid reaction medium, such as by application of high intensity ultrasonic vibrations or high-shear mixing to the reaction vessel. Continued cavitation of the liquid medium affects relatively low temperature reduction of the precursor halide(s) to produce a titanium-containing product such as titanium metal, a titanium alloy or compound, or a titanium matrix-ceramic composite material, or the like. | 11-06-2008 |
20080271570 | METHOD TO PREPARE NANOPARTICLES SUSPENSION IN IONIC LIQUIDS - A method to preparing suspensions of metal or metal alloy nanoparticles in an ionic liquid involves the physical vapor deposition of a metal or a mixture of metals onto an ionic liquid. The method can be modified by the introduction of a reagent during or after formation of the suspension to yield nanoparticles of a metal salt. The nanoparticles can be isolated from the suspension by the thermal decomposition of the ionic liquid under conditions where the decomposition products are gaseous. | 11-06-2008 |
20080295645 | CAVITATION PROCESS FOR PRODUCTS FROM PRECURSOR HALIDES - A precursor halide compound is reduced to a predetermined product at substantially ambient conditions. The halide is added to an anhydrous liquid reaction medium containing one or more alkali metals or alkaline earth metals as reductants. The metal reductants are dispersed as very small globules in the liquid by cavitation of the liquid, such as by application of high intensity ultrasonic vibrations or high-shear mixing to the reaction vessel. Continued cavitation of the liquid medium affects low temperature reduction of the precursor halide(s) to produce a metal, metal alloy, metal compound, ceramic material, metal matrix-ceramic composite material, or the like. The practice may be applied, for example, to titanium tetrachloride, alone or with other chlorides, to produce titanium metal, titanium alloys (for example Ti-6Al-4V), and titanium compounds (TiSi | 12-04-2008 |
20080295646 | Method of Making Metal Nanoprisms Having a Predetermined Thickness - A method of preparing metal nanoprisms having a unimodal size distribution and a predetermined thickness. The present method also allows control over nanoprism edge length. | 12-04-2008 |
20090145266 | Metal Powder Production System and Method - A metal powder production system includes a vacuum chamber having a vacuum chamber interior, a stock feed mechanism communicating with the vacuum chamber interior, a radiation source provided in the vacuum chamber interior, a cooling chamber having a cooling chamber interior communicating with the vacuum chamber interior and a container communicating with the cooling chamber interior. A metal powder production method is also disclosed. | 06-11-2009 |
20090308202 | METHODS OF MAKING NANOPRISMS - The invention is a novel photo-induced method for converting large quantities of silver nanospheres into nanoprisms, the nanoprisms formed by this method and applications in which the nanoprisms are useful. Significantly, this light driven process results in a colloid with a unique set of optical properties that directly relate to the nanoprism shape of the particles. Theoretical calculations coupled with experimental observations allow for the assignment of the nanoprism plasmon bands and the first identification of two distinct quadrupole plasmon resonances for a nanoparticle. Finally, unlike the spherical particles from which they derive and which Rayleigh light scatter in the blue, these nanoprisms exhibit-scattering in the red, permitting multicolor diagnostic labels based not only on nanoparticle composition and size but also on shape. | 12-17-2009 |
20100132507 | METHOD FOR PATTERNING METAL USING NANOPARTICLE CONTAINING PRECURSORS - Continuous, conducting metal patterns can be formed from metal nanoparticle containing films by exposure to radiation (FIG. | 06-03-2010 |
20100154591 | HOUSEHOLD MICROWAVE-MEDIATED CARBOHYDRATE-BASED PRODUCTION OF SILVER NANOMATERIALS - A relatively simple and inexpensive method for the synthesis of silver nanoparticles within a short period of time using a household microwave or the like is provided. The energy needed to heat the synthesis reaction is minimized and the organic reducing reagents of the prior art are replaced with natural products such as purified carbohydrates (e.g., glucose, sucrose, fructose, galactose, ribose, lactose) or their readily available and inexpensive forms (e.g., high fructose corn syrup, sucrose syrup). The resulting nanoparticles are purified from the remaining silver ion which is then recaptured for the safe disposal of the waste reaction mixture. | 06-24-2010 |
20100218645 | METHOD OF REMOVAL OF HEAVY METAL IONS FROM WATER - A method for removal of heavy metal ions from water including submerging an aquatic plant or dried material thereof in said water and subsequently irradiating the water in which the aquatic plant or dried material has been submerged with microwave irradiation. | 09-02-2010 |
20100229684 | METAL FINE PARTICLES, COMPOSITION CONTAINING THE SAME, AND PRODUCTION METHOD FOR PRODUCING METAL FINE PARTICLES - The present invention provides metal fine particles which have selective wavelength absorption characteristics in a wavelength region from visible light to near infrared light, and have sharp absorption characteristics, and influences little the surrounding wavelength, and therefore, they yield tones having high chroma. The present invention provides metal fine particles wherein an aspect ratio is in a range from 1.1 to 8.0, a maximum absorption wavelength in plasmon absorption is in a range from 400 nm to 1,200 nm, and an absorption coefficient at a peak position of the maximum absorption wavelength is in a range from 6,000 to 20,000 L/mol·cm (measurement concentration: 1.6×10 | 09-16-2010 |
20100242679 | METHOD FOR CONTINUOUSLY FABRICATING SILVER NANOWIRE - The invention discloses a method for continuously fabricating silver nanowires. The method mixes a glycol solution of a silver salt and a glycol solution of a polyvinyl pyrrolidone, and the mixed solution reacts in a temperature range and a time range to form the silver nanowires. The polyvinyl pyrrolidone has high boiling point and reduction ability so as to reduce the silver salt to the silver nanoparticles, and simultaneously, the polyvinyl pyrrolidone can provide barriers for limiting the particle growth. Besides, the oxygen functional groups on the long chains of the polyvinyl pyrrolidone can keep the stably one-dimensional growth of the silver nanoparticles to form the silver nanowires during the aging process. | 09-30-2010 |
20100319489 | APPARATUS AND METHOD FOR MANUFACTURING METAL NANOPARTICLES - The present invention relates to an apparatus and a method of manufacturing metal nanoparticles, and more particularly to an apparatus including: a precursor supplying part which supplies a precursor solution of metal nanoparticles; a first heating part which is connected with the precursor supplying part, includes a reactor channel having a diameter of | 12-23-2010 |
20110011207 | METAL POWDER PRODUCTION SYSTEM AND METHOD - A metal powder production system includes a vacuum chamber having a vacuum chamber interior, a stock feed mechanism communicating with the vacuum chamber interior, a radiation source provided in the vacuum chamber interior, a cooling chamber having a cooling chamber interior communicating with the vacuum chamber interior and a container communicating with the cooling chamber interior. A metal powder production method is also disclosed. | 01-20-2011 |
20110048171 | Continuous Reaction Process For Preparing Metallic Nanoparticles - A method for producing metallic nanoparticles in a continuous flow-through reactor comprising combining at least one metallic precursor and at least one radical precursor in a reactant reservoir to form a reactant stream; flowing the reactant stream through at least one channel having a first channel end connected to the reactant reservoir, a second channel end connected to a product reservoir, and at least one clear channel section, which is transparent to activating radiation used to generate a radical reducing agent from the radical precursor, for exposing the reactant stream to a radiation source; exposing the reactant stream in the clear channel section to the radiation source to generate the radical reducing agent, initiate a reaction, and form a product stream comprising metallic nanoparticles; and optionally, collecting the product stream in the product reservoir. | 03-03-2011 |
20110088511 | METHOD FOR PRODUCING ROD-SHAPED AND BRANCHED METALLIC NANO-STRUCTURES BY POLYOL COMPOUNDS - The various embodiments herein provide method of producing a rod-shape and branched metal nano-structures with polyol compounds as a reducing agent. The metal nano-structures are produced in a closed chamber of microwave system with variable irradiation power at a designed temperature. The metal nano-structures produced exhibits localized plasmon-polariton resonance, exhibit spectral resonance positions at microwave or radio frequencies and exhibit multiple spectral resonance peak at microwave or radio frequencies. The metal nano-structures produced are suitable as a coating composition material, a coating, a film, a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near-infrared absorber, an anti-counterfeit ink and an electromagnetic shielding material, a surface enhanced fluorescent sensor, a biomarker and a nano-waveguide. | 04-21-2011 |
20110132144 | Method For Producing Metal Nanoparticles In Polyols - The invention relates to a process for the preparation of metal nanoparticles, selected from the group consisting of lead, bismuth, zinc, antimony, indium, gold, nickel, cobalt, palladium, platinum, iridium, osmium, rhodium, ruthenium, rhenium, vanadium, chromium, manganese, niobium, molybdenum, tungsten, tantalum, cadmium, silver and/or copper, on a rotating body, characterized in that a reduction of corresponding metal salts, corresponding metal salt complexes, corresponding metal hydroxides and/or corresponding metal oxides by polyols having a number of hydroxyl groups in the polyol of 1 to 10 and a molecular weight of the polyols of 2000 to 18 000 Da is effected. | 06-09-2011 |
20110146449 | METHODS AND COMPOSITIONS COMPRISING POLYOXOMETALATES - The present invention generally relates to compositions and methods comprising polyoxometalates (POMs). In some cases, a reduced form of a POM may be formed via electrolysis in the presence of essentially no supporting electrolyte. The reduced POMs may be used for various applications, for example, for the formation of metallic nanoparticles. Some embodiments of the present invention provide compositions and methods comprising reduced forms of the polyoxometalate, [alpha-SiW | 06-23-2011 |
20110154948 | METHOD FOR MANUFACTURING METAL FLAKES - Disclosed herein is a method of manufacturing a metal flake, including the steps of: applying metal ink containing an organic metal compound onto a substrate; calcining the metal ink applied on the substrate to form a thin metal film; separating the formed thin metal film from the substrate; and pulverizing the separated thin metal film. The method of manufacturing a metal flake is characterized in that the thickness and size of metal flakes can be easily adjusted, metal flakes having excellent conductivity and gloss can be obtained, and metal flakes can be mass-produced using environmentally friendly and economical methods. | 06-30-2011 |
20110209578 | NANOPARTICLE MANUFACTURING DEVICE AND NANOPARTICLE MANUFACTURING METHOD AND METHOD OF MANUFACTURING NANOPARTICLE-DISPERSED LIQUID ALKALI METAL - A nanoparticle manufacturing device capable of particle size control of nanoparticles made of a raw material metal powder and control of the occurrence condition of chaining of nanoparticles and of necking. The device 1 is provided for manufacturing nanoparticles by heating and melting a mixture of a raw material metal powder and a carrier gas in a heating space, cooling the mixture in a cooling space and collecting the mixture in a collection space. The heating space, the cooling space and the collection space form a continuous flow path without a back flow, and the cross-sectional area of the collection space is set at a large value compared to the cross-sectional area of the heating space and the cooling space. Further, there is provided a method of manufacturing a nanoparticle-dispersed liquid alkali metal by dispersing nanoparticles in a liquid alkali metal. A liquid alkali metal obtained by dispersing nanoparticles in the liquid alkali metal is manufactured by performing a rough dispersion step of stirring nanoparticles in the liquid alkali metal by a physical effect and a dispersion step of dispersing nanoparticles in the liquid alkali metal by irradiating the liquid alkali metal with ultrasonic waves after the rough dispersion step. | 09-01-2011 |
20120240727 | METHOD OF MANUFACTURING SOLDER POWDER HAVING DIAMETER OF SUB-MICROMETERS OR SEVERAL MICROMETERS - Disclosed is a method of manufacturing a solder powder having a diameter of sub-micrometers or several micrometers, the method including: mixing solder powder having a diameter of 10 to 1000 micrometers with a polymer resin to obtain a mixture; heating the mixture to a temperature higher than a melting point of the solder powder in the mixture; applying ultrasonic waves to the heated mixture so that the diameter of the solder powder becomes 0.1 to 10 micrometers; and cooling the mixture to the room temperature without exposing the solder powder of 0.1 to 10 micrometers to the air. | 09-27-2012 |
20130008286 | METHOD FOR PRODUCING NICKEL NANOPARTICLES - A method for producing nickel nanoparticles is described, including a first step of heating a mixture of a nickel carboxylate with 1-12 carbon atoms in its moiety excluding —COOH and a primary amine to obtain a complexed reaction solution with a nickel complex foiiiied therein, and a second step of heating the complexed reaction solution by a microwave to obtain a Ni-nanoparticle slurry. In the first step, the heating is preferably conducted at a temperature of 105-175° C. for 15 minutes or longer. In the second step, the heating is preferably conducted at a temperature of 180° C. or higher. | 01-10-2013 |
20130298731 | METHOD FOR EFFICIENT EXTRACTION OF GOLD FROM GOLD ORES UTILIZING MACRO QUANTUM RESONANCE EFFECT - Gold ores are processed to obtain a mixture comprising gold particles and other particles, such as quartz particles. The mixture then passes through a location near a quantum resonance driver. The quantum resonance driver generates a macro quantum resonance effect that causes the gold particles to move away from the driver so that gold particles are separated from the mixture. | 11-14-2013 |
20140020508 | Method for Manufacturing Metal Nanoparticles Having a Core-Shell Structure with Good Oxidation Stability - Provided is a method for manufacturing metal nanoparticles having a core-shell structure with good oxidation stability, wherein the method comprises the steps of: heating and agitating a core metal precursor solution; mixing a shell metal precursor solution with the heated and agitated core metal precursor solution, and heating and agitating the mixed metal precursor solution; and irradiating the heated and agitated metal precursor solution with radioactive rays. Thus, since yield can be maximized through a simple and environmentally friendly process that does not use a chemical reducing agent, there is no need for a process for removing an added reducing agent, and since a post-heat-treatment of particles is not performed, the manufacturing process is rendered simple and highly economical. | 01-23-2014 |
20140020509 | METHOD FOR PREPARING METAL PARTICLES - A method for preparing metal particles, including the steps of: depositing a metal layer on a substrate, irradiating the metal layer with a laser, a plate of a material transparent or quasi-transparent to the laser wavelength being interposed between the metal layer and the laser source. | 01-23-2014 |
20140102254 | METHODS OF RAPID PREPARATION OF SILVER NANOWIRES WITH HIGH ASPECT RATIO - Disclosed is a method suitable for efficiently producing silver nanowires with high aspect ratio. In this method, silver nanowires with aspect ratio of more than 300 and purity of more than 80% are produced through an acid compound mediated microwave-assisted wet chemistry method. Such silver nanowires are especially suitable for the application in the flexible transparent electrodes, as they can simultaneously improve the electrical conductivity and transparency. | 04-17-2014 |
20140311293 | Preparation of Nanopowders of Reactive Metals via Reduction Under Sonication - A nanopowder and a method of making are disclosed. The nanopowder may be in the form of nanoparticles with an average size of less than about 200 nm and contain a reactive transition metal, such as hafnium, zirconium, or titanium. The nanopowder can be formed in a liquid under sonication by reducing a halide of the transition metal. | 10-23-2014 |
20150135898 | METHOD FOR PRODUCING NANOPOWDERS USING ELECTRICAL WIRE EXPLOSION - A method for producing nanopowders using electrical wire explosion is provided, which includes forming a wire in a helical spring structure, supplying the formed wire to a supplier, electrically exploring the wire through applying high voltage to the wire after supplying the wire that is supplied to the supplier into a chamber, and collecting nanopowders generated through explosion of the wire, wherein the wire formed in a helical spring structure has a pitch of 0.4 to 0.8 mm, a number of coils of 10 to 13, and a diameter of 1 to 2 mm. | 05-21-2015 |
20160002799 | Method and Apparatus For Separation of Aluminum From Aluminum-Containing Source Materials - Method and apparatus thereof to separate aluminum from aluminum-containing source material, such as fly ash, includes preparing a slurry of the source material and water in an agitation tank and adding a leaching reactant to the slurry in an amount dependent on the amount of aluminum in the source material. After agitation, transferring the mixture to a settling pond. After settling, transferring the liquid as a pregnant solution to an electric cell. Treating the pregnant solution in the electric cell by applying an electrical current that is periodically reversed as the pregnant solution passes between at least two metal plates in the electric cell. Collecting the treated solution in a cone bottom tank and separating aluminum particles from the treated solution using a filter press. Drying the particulate aluminum and pressing the aluminum into solid shapes. | 01-07-2016 |
075346000 | Utilizing plasma | 9 |
20090293675 | METHOD AND APPARATUS OF PRODUCING NANOPARTICLES USING NEBULIZED DROPLET - Methods of generating nanoparticles are described that comprises feeding nebulized droplets into a radio frequency plasma torch to generate nanoparticles, wherein the majority of the nanoparticles generated have a diameter of less than about 50 nm. These methods are useful for synthesizing nanoparticles of metals, semiconductors, ceramics or any other material class where the precursors are either in liquid form or can be dissolved or suspended in a suitable liquid. Methods of feeding nebulized droplets and central gas into a radio frequency plasma torch and apparatus for generating nanoparticles are also described. | 12-03-2009 |
20110005352 | Method of Producing Inorganic Nanoparticles in Atmosphere and Device Therefor - Provided are a method and a device for producing nanoparticles of a low melting point material such as gold at more than 10 times faster the rate of conventional technology while maintaining the time-averaged temperature of pulse-modulated atmospheric-pressure plasma at a temperature that is low enough so as not to damage a heat-sensitive material disposed downstream. This method of preparing nanoparticles of a low melting point inorganic material in which a wire made of a low melting point inorganic material is inserted into a plasma-generating capillary tube or a plasma-generating nozzle and atmospheric-pressure high frequency plasma is generated in the capillary tube or nozzle is characterized by generating the plasma by applying a high frequency voltage possessing a waveform which exhibits its maximum value when it rises and then immediately falls, and which is pulse-modulated so that the duty ratio thereof is 10% or less. | 01-13-2011 |
20110277590 | Method For Producing Metal Nanopowders By Decomposition Of Metal Carbonyl Using An Induction Plasma Torch - A process for synthesizing metal nanopowders by introducing metal carbonyl into an induction plasma torch. By taking advantage of the much lower dissolution temperature of carbonyl as opposed to the high melting temperature of conventional metal powder feeds less torch power is required. Moreover, in contrast to current powder production techniques utilizing electrode based plasma torches, the induction plasma torch does not introduce contaminants into the nanopowder. | 11-17-2011 |
20120291592 | PROCESS FOR PREPARING METAL POWDERS HAVING LOW OXYGEN CONTENT, POWDERS SO-PRODUCED AND USES THEREOF - In various embodiments, low-oxygen metal powder is produced by heating a metal powder to a temperature at which an oxide of the metal powder becomes thermodynamically unstable and applying a pressure to volatilize the oxygen. | 11-22-2012 |
20140123810 | Preparation method of Ruthenium(Ru) powder for preparation of Ruthenium target - The present invention is related to a manufacturing method of high purity and refined Ru (Ruthenium) powder produced by using a waste Ru target. Yield of the target and physical properties of a thin film are improved by producing tremendously refined in which oxygen content of the target is decreased, and a crystal particle size is reduced. | 05-08-2014 |
20140238195 | TREATMENT OF CHEMICAL FEEDSTOCKS - A process for treating a zirconium containing feedstock includes fluorinating a feedstock comprising dissociated zircon (‘DZ’) to obtain a zirconium fluorine compound and a silicon fluorine compound. The zirconium fluorine compound is separated from the silicon fluorine compound is provided. Optionally, the zirconium fluorine compound is reacted with a non-fluorine halogen, an alkali metal non-fluorine halide or an alkaline-earth metal non-fluorine halide, thereby to obtain a zirconium non-fluorine halide. The zirconium fluorine compound or, when present, the zirconium non-fluorine halide is subjected to plasma reduction, in a plasma reduction stage, in the presence of a reductant, to obtain metallic zirconium. | 08-28-2014 |
20140283650 | METHOD OF MANUFACTURING POWDER HAVING HIGH SURFACE AREA - A method of manufacturing a powder having a high surface area is provided. According to the method of manufacturing a powder having a high surface area, a metal electrolyte in which metal ions of different kinds of first metals are dissociated is prepared. Subsequently, a metal alloy powder formed of the first metals is formed by soaking a second metal having a higher reducing power than the first metals in the metal electrolyte to induce a first spontaneous substitution reaction. Therefore, it is possible to form a powder having an improved specific surface area. | 09-25-2014 |
20140318318 | NON-PLUGGING D.C. PLASMA GUN - A plasma gun system comprising: a plasma gun comprising an outlet, wherein the plasma gun is configured to generate a plasma stream and provide the plasma stream to the outlet; and a plasma gun extension assembly configured to be coupled to the plasma gun, wherein the plasma gun extension assembly comprises an extension chamber and a port, the extension chamber having an interior diameter defined by a chamber wall and being configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber, and the port being configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun. | 10-30-2014 |
20160175936 | Process and Apparatus for Producing Powder Particles by Atomization of a Feed Material in the Form of an Elongated Member | 06-23-2016 |
075347000 | Utilizing magnetism | 9 |
20090260483 | METHOD FOR THE COMMERCIAL PRODUCTION OF IRON - A method for the production of iron from an iron oxide-containing material includes contacting an iron oxide-containing material with a particle size distribution range with a ∂ | 10-22-2009 |
20100175507 | PROCESS FOR PRODUCTION OF CHAIN METAL POWDERS, CHAIN METAL POWDERS PRODUCED THEREBY, AND ANISOTROPIC CONDUCTIVE FILM FORMED BY USING THE POWDERS - A process for production of a chain metal powder, which comprises the steps of reducing metal ions contained in an aqueous solution, while applying a magnetic filed to the solution, in the presence of both a reducing agent capable of generating a gas during the reduction of metal ions and a foamable water soluble compound, through the generation of a gas, a bubble layer on the surface of the aqueous solution to form a chain metal powder, separating the bubble layer formed on the surface of the aqueous solution from the solution, and collecting the chain metal powder contained in the bubble layer. | 07-15-2010 |
20100180727 | METHOD FOR THE PRODUCTION OF METAL POWDER - The invention relates to a method for leaching a material containing a valuable metal and precipitating the valuable metal as a fine-grained powder by changing the electrochemical potential of an intermediary metal in the solution. In the leaching stage the intermediary metal or substance of the electrolyte solution is at a high degree of oxidation and in the precipitation stage another electrolyte solution is routed into the solution, in which the intermediary metal or substance is at a low degree of oxidation. After the precipitation stage the solution containing the intermediary is routed to electrolytic regeneration, in which part of the intermediary is oxidised in the anode space back to a high potential value and part is reduced in the cathode space to its low value. | 07-22-2010 |
20110094338 | METHOD FOR MANUFACTURING Fe-Si ALLOY POWDERS - The present invention relates to a method for manufacturing a Fe—Si alloy powder. A method for manufacturing a Fe—Si alloy powder includes: providing a mixture of an Al | 04-28-2011 |
20110303050 | Method of forming zinc peroxide nanoparticles - The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO | 12-15-2011 |
20120272789 | Method and apparatus for producing nanoparticles - By means of the invention, nanoparticles, which can be pure metal, alloys of two or more metals, a mixture of agglomerates, or particles possessing a shell structure, are manufactured in a gas phase. Due to the low temperature of the gas exiting from the apparatus, metallic nanoparticles can also be mixed with temperature-sensitive materials, such as polymers. The method is economical and is suitable for industrial-scale production. A first embodiment of the invention is the manufacture of metallic nanoparticles for ink used in printed electronics. | 11-01-2012 |
20140033869 | Method for the Commercial Production of Iron - A method for the production of iron from an iron oxide-containing material includes contacting an iron oxide-containing material with a particle size distribution range with a ∂ | 02-06-2014 |
20140260800 | METHOD FOR PRODUCING MAGNETIC POWDER FOR FORMING SINTERED BODY THAT IS PRECURSOR OF RARE-EARTH MAGNET - A method for producing magnetic powder for forming a sintered body that is a precursor of a rare-earth magnet. Provided is a method for producing magnetic powder for forming a sintered body that is a precursor of a rare-earth magnet, which can produce magnetic powder with a structure containing optimal nanosized crystal grains by accurately and efficiently sorting out magnetic powder containing no coarse grains in the structure thereof. A method for producing magnetic powder p for forming a sintered body S that is a precursor of a rare-earth magnet, the sintered body S including an Nd—Fe—B-based main phase with a nanocrystalline structure, and a grain boundary phase around the main phase, and the rare-earth magnet being adapted to be formed by applying hot deformation processing to the sintered body S for imparting anisotropy thereto and diffusing an alloy for improving coercivity therein, the method including discharging a metal melt onto a chill roll R to produce a quenched ribbon B, and grinding the quenched ribbon B into grains in the size range of 50 to 1000 μm to produce magnetic powder in the mass range of 0.0003 to 03 mg; conducting a test to see whether or not the magnetic powder in the mass range adsorbs onto a magnet with a surface magnetic flux density of 2 mT or less, and sorting out magnetic powder p that has not adsorbed onto the magnet, as the magnetic powder for forming the sintered body S. | 09-18-2014 |
20160052060 | MIXING COLD HEARTH METALLURGICAL SYSTEM AND PROCESS FOR PRODUCING METALS AND METAL ALLOYS - A metallurgical system for producing metals and metal alloys includes a fluid cooled mixing cold hearth having a melting cavity configured to hold a raw material for melting into a molten metal, and a mechanical drive configured to mount and move the mixing cold hearth for mixing the raw material. The system also includes a heat source configured to heat the raw material in the melting cavity, and a heat removal system configured to provide adjustable insulation for the molten metal. The mixing cold hearth can be configured as a removal element of an assembly of interchangeable mixing cold hearths, with each mixing cold hearth of the assembly configured for melting a specific category of raw materials. A process includes the steps of providing the mixing cold hearth, feeding the raw material into the melting cavity, heating the raw material, and moving the mixing cold hearth during the heating step. | 02-25-2016 |