Class / Patent application number | Description | Number of patent applications / Date published |
073514390 | Magnetic speed measuring or mechanical speed measuring with ancillary magnetic means or with ancillary electrical means | 15 |
20090277268 | MAGNETIZED PULSAR RING AND ROLLING BEARING APPARATUS WITH SENSOR HAVING THE SAME - [Means for Resolution] A magnetized body is a bonded magnet and is fixed to a support member by integral injection molding. A bend portion extending axially outwardly is formed in an outwardly-directed flange portion of the support member. A come-off preventing concave portion is constituted by the bend portion and the outwardly-directed flange portion. The magnetized body enters this concave portion. Consequently, the magnetized body is prevented from performing relative movement with respect to the support member. | 11-12-2009 |
20110259102 | SPEED SENSOR - A speed sensor has a static part and a dynamic part arranged concentrically inside the static part. The static part has two permanent magnets and the dynamic part has two further permanent magnets. The magnet is oriented reversely to the further magnets. The magnets are tuned to each other so that gravity on the dynamic part is counteracted by the magnetic force on the dynamic part. As a result, the weight of the dynamic part need not be carried by springs and the dynamic part can move freely so that the full stroke can be used for measuring accelerations and the natural frequency is low. The static part further includes a measuring coil for measuring the displacement of the dynamic part and for the radial positioning of the dynamic part this part is connected to the static part by means of leaf springs. | 10-27-2011 |
20120125106 | METHOD FOR MANUFACTURING A SENSOR - A method for manufacturing a sensor, in particular for recording rotational speed. At least one stamped grid is provided for electrically contacting the sensor, in particular a sensor element of the sensor. In addition, at least one homogenization plate is provided for influencing a magnetic field, the stamped grid and the homogenization plate being connected by at least one holder. The holder fixes the stamped grid and the homogenization plate in place positively and/or non-positively. | 05-24-2012 |
20130000406 | System and method for determining a gate position - A system and method for determining the position of a moveable barrier relative to the fully open position and fully closed position. The invention utilizes in a preferred embodiment a geo-magnetic sensor to determine the extent to which the barrier has traveled from reference position of fully open or fully closed to some intermediate point. A multi-axis sensor provides an output which changes during the barrier's excursion relative to each of the respective axes so that direction or tilt may be readily known in between the closed and open positions. Operation of the gate or barrier may be more efficiently controlled when its precise location between open and closed is known. | 01-03-2013 |
20130061676 | SENSING UNIT FOR BICYCLE SPEEDOMETER - A sensing unit for a bicycle speedometer is disclosed. The bicycle speedometer has a meter body and the sensing unit for detecting pedaling and generating a signal related to bicycle pedaling. The sensing unit includes a sensor mounted on a bicycle frame and a fixture for carrying a sensed member. The fixture has a fixing end coupled with a bicycle crank and a coupling arm for carrying the sensed member. The fixture allows positional adjustment of the sensed member with respect to the bicycle crank, thereby facilitating aligning the sensed member with the sensor, so as to ensure proper sensing of the sensor to the sensed member. | 03-14-2013 |
20130145847 | ASYMMETRICAL SENSOR TARGETS - A speed sensor target includes a target body, the target body defining a central cavity disposed to receive a shaft of a motor, the target body includes a cylindrical outer surface having a plurality of asymmetrically spaced grooves arranged thereon, and the target body is formed of a magnetic material. | 06-13-2013 |
20140109673 | STRESS REDUCTION COMPONENTS FOR SENSORS - An accelerometer device for reducing stress on the sensor resulting from temperature extremes and multiple coefficients of thermal expansion. An exemplary accelerometer device includes upper and lower stators and a reed. The reed includes a support ring and a paddle that is flexibly connected to the support ring. The support ring includes a ring section and at least two mounting devices. The mounting devices are at least partially mechanically isolated from the ring section. The ring section flexibly receives the paddle. The mounting devices include a pad area and a neck area that connect the pad area to the ring section. The neck area includes a width dimension that is narrower than a diameter dimension of the pad area. | 04-24-2014 |
20140165726 | Speed Sensor Assembly - A robust and compact speed sensor assembly that includes a Hall effect sensor with protective circuitry in a compact housing that can be attached to the wheel of a motorcycle in the vicinity of the brake rotor to present the sensor Hall plate in a proper transverse-to-target orientation to detect passing targets, such as the brake rotor mounting bolts or magnets. | 06-19-2014 |
20140165727 | Sensor Unit for a Vehicle - A sensor arrangement for a vehicle has a sensor unit and a cable arrangement, wherein the sensor unit comprises a main support and an electronics part which is connected to the main support and has a sensor element, wherein the cable arrangement, which comprises at least one individual wire, can make electrical contact with the electronics part by means of at least one contact-making means. The main support is designed as an open housing which has at least one insertion opening for accommodating the at least one contact-making means and an accommodation pocket for at least partially accommodating the electronics parts, wherein an elastic cap with means for fastening the sensor unit in the vehicle is provided, it being possible for said elastic cap to be pushed at least partially over the main support, and said elastic cap closing off the accommodation pocket in a sealed manner. | 06-19-2014 |
20140260617 | FULLY DIFFERENTIAL CAPACITIVE ARCHITECTURE FOR MEMS ACCELEROMETER - A fully differential microelectromechanical system (MEMS) accelerometer configured to measure Z-axis acceleration is disclosed. This may avoid some of the disadvantages in traditional capacitive sensing architectures—for example, less sensitivity, low noise suppression, and low SNR, due to Brownian noise. In one embodiment, the accelerometer comprises three silicon wafers, fabricated with electrodes forming capacitors in a fully differential capacitive architecture. These electrodes may be isolated on a layer of silicon dioxide. In some embodiments, the accelerometer also includes silicon dioxide layers, piezoelectric structures, getter layers, bonding pads, bonding spacers, and force feedback electrodes, which may apply a force to the proof mass region. Fully differential MEMS accelerometers may be used in geophysical surveys, e.g., for seismic sensing or acoustic positioning. | 09-18-2014 |
20140260618 | FORCE FEEDBACK ELECTRODES IN MEMS ACCELEROMETER - A microelectromechanical system (MEMS) accelerometer having separate sense and force-feedback electrodes is disclosed. The use of separate electrodes may in some embodiments increase the dynamic range of such devices. Other possible advantages include, for example, better sensitivity, better noise suppression, and better signal-to-noise ratio. In one embodiment, the accelerometer includes three silicon wafers, fabricated with sensing electrodes forming capacitors in a fully differential capacitive architecture, and with separate force feedback electrodes forming capacitors for force feedback. These electrodes may be isolated on a layer of silicon dioxide. In some embodiments, the accelerometer also includes silicon dioxide layers, piezoelectric structures, getter layers, bonding pads, bonding spacers, and force feedback electrodes, which may apply a restoring force to the proof mass region. MEMS accelerometers with force-feedback electrodes may be used in geophysical surveys, e.g., for seismic sensing or acoustic positioning. | 09-18-2014 |
20140290365 | MEMS DEVICE - A MEMS gyro is provided, having a movable portion, a non-movable portion, and a magnetic sensing structure that comprises a magnetic source disposed at the movable portion, a magnetic sensing element positioned at the non-movable portion. The movable portion is capable of moving in response to external angular velocity or an external accelerator such that the magnetic field sensed by the magnetic sensing element is in relation to the movement of the movable portion, therefore, the angular velocity or the accelerator. | 10-02-2014 |
20140345381 | Motion Rate Sensor - A motion rate sensor for detecting the rate of movement of an article, comprising: a housing relative to which, in use, the article moves, a detection unit disposed within the housing, the detection unit including a conversion device adapted for generating detector signals caused by the motion of the article, and processing circuitry adapted for receiving said detector signals and outputting motion signals indicative of the rate of movement of the article. In embodiments, the detector signals are caused by variations in optical or light energy, in magnetic fields or radiation intensity. The variations may be caused by variations on the surface in the article, for example a random or repetitive pattern. An apparatus and method for calibrating the sensor are also disclosed, as are a system and method for determining the speed of motion of an article using the sensor. | 11-27-2014 |
20150128704 | ARRANGEMENT FOR MONITORING A STRUCTURAL COMPONENT WHICH ROTATES ABOUT ITS AXIS - An arrangement is provided for monitoring the rate of rotation of a structural component rotating about its axis and arranged in a motor vehicle in the immediate vicinity of the structural component. The speed sensor ( | 05-14-2015 |
20150293142 | FULLY DIFFERENTIAL CAPACITIVE ARCHITECTURE FOR MEMS ACCELEROMETER - A fully differential microelectromechanical system (MEMS) accelerometer configured to measure Z-axis acceleration is disclosed. This may avoid some of the disadvantages in traditional capacitive sensing architectures—for example, less sensitivity, low noise suppression, and low SNR, due to Brownian noise. In one embodiment, the accelerometer comprises three silicon wafers, fabricated with electrodes forming capacitors in a fully differential capacitive architecture. These electrodes may be isolated on a layer of silicon dioxide. In some embodiments, the accelerometer also includes silicon dioxide layers, piezoelectric structures, getter layers, bonding pads, bonding spacers, and force feedback electrodes, which may apply a force to the proof mass region. Fully differential MEMS accelerometers may be used in geophysical surveys, e.g., for seismic sensing or acoustic positioning. | 10-15-2015 |