Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Specific type of elastic member

Subclass of:

073 - Measuring and testing

073862000 - DYNAMOMETERS

073862381 - Responsive to force

073862621 - By measuring elastic deformation

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
073862636 Specific type of elastic member 35
20100326210LOAD SENSING PLATFORM FOR MEASURING A PARAMETER OF THE MUSCULAR-SKELETAL SYSTEM - A load sensing platform (12-30-2010
20100326211SENSING MODULE HAVING A PIEZO-RESISTIVE SENSOR FOR ORTHOPEDIC LOAD SENSING INSERT DEVICE - A sensing insert device (12-30-2010
20110120235ELASTIC BODY FOR MEASURING LOADS AND A NON-CONTACT LOAD-MEASURING DEVICE USING THE SAME - An elastic body for measuring loads and a non-contact load-measuring device are disclosed. The elastic body includes: an elastic body base; a multiple number of slits formed in the elastic body base; and a deforming space part formed in the elastic body base. Inside the deforming space part are formed: a hinge, a first deforming part coupled with the hinge, and a second deforming part that is coupled with the first deforming part and the hinge and is formed with a greater length than that of the first deforming part. The first deforming part and second deforming part are configured to undergo rotational movements about the hinge in correspondence to the load, the first deforming part moving downwards in correspondence to the load and the second deforming part moving upwards in correspondence to the load. The upward displacement of the second deforming part is used for measuring the load.05-26-2011
20110179885OPERATION AMOUNT DETECTING APPARATUS - In an operation amount detecting apparatus, a brake pedal (07-28-2011
20120042735Feedback System for Identifying Movement and Intensity of External Force - A feedback system for identifying an external force, includes an operation plate and a pressure-sensing unit. The pressure-sensing unit includes an elastic member supporting the operation plate and a pressure sensor inside the elastic member. The pressure sensor includes a pressure sensitive film. An inner side of the elastic member is filled with fluid material which acts on the pressure sensitive film. The operation plate is driven by the external force to be slant which extrudes the elastic member to deform so as to change fluid pressure of the fluid material limited in the elastic member, and such change of the fluid pressure can be sensed by the pressure sensitive film of the pressure sensor so as to identify the movement and the intensity of the external force.02-23-2012
20130263679FORCE GAUGE FOR PLIABLE MATERIAL - A force gauge assembly used to measure forces or spring rate of an object utilizing a diaphragm strain gauge for mechanically compensating for loads not being centrally applied to the gauge. The construction of the gauge provides readings that will be substantially the same as if the load were applied in perfect alignment. The gauge utilizes internal components that remain the same even though the force gauge is adaptable for measuring different objects.10-10-2013
20140047929FORCE CALCULATING SYSTEM - The force calculation system of the present invention is provided with: an air blowing unit for blowing air at a predetermined pressure; a flow passage for air blown from air blowing unit; a sensing unit for changing the ease of flow of air that flows through a flow passage by deforming when an external force is given; a storage unit for storing in advance the flow volume-force correspondence information showing the correspondence between the magnitude of the force received by the sensing unit and the flow volume at which air blown from air blowing unit flows through the flow passage; and a processing unit for calculating the magnitude of external force received by the sensing unit, on the basis of the flow volume of air flowing through the flow passage as measured by a flow volume meter; and the flow volume-force correspondence information stored in the storage unit.02-20-2014
20140076066MULTICAPACITOR FORCE/MOMENT SENSOR ARRAYS - A multicapacitor sensor system facilitates the measurement of applied shear and moment forces. In one disclosed configuration, moments may be detectable in x, y and z directions, resulting in a full, 3-axis load cell with 6 degrees of freedom. The system may further include electrical circuitry to generate electrical drive pulses, sense amplify and buffer the voltages induced on the sense plates, and compute applied forces. An array of multicapacitor sensors that can be addressed individually without cross-talk and globally produce a map of forces and moments applied to the whole array. A MEMS implementation enables in vivo application.03-20-2014
20140144253DETECTION DEVICE, ELECTRONIC APPARATUS, AND ROBOT - A first substrate that includes pressure sensors which are disposed in plural around a reference point; an approximately hemispherical elastic protrusion that is positioned so that the center of the elastic protrusion is approximately disposed in a position which is overlapped with the reference point, and is elastically deformed by an external force; and a second substrate that is separated from the elastic protrusion and installed on a side which is opposite to the first substrate are provided. When the external force is applied, a predetermined calculation is performed by using a pressure value which is detected through each pressure sensor, and the direction and the intensity of the applied external force are obtained.05-29-2014
20140251030PRESSURE TRANSDUCER SUBSTRATE WITH SELF ALIGNMENT FEATURE - In an embodiment, an apparatus includes a first substrate. The first substrate may have a first side for accommodating a first diaphragm. The first substrate may also have a second side. The second side may include a polygonal-shaped depression that is sized to accommodate a second diaphragm associated with a second substrate. The first substrate and first diaphragm may be included in a first assembly and the second substrate and second diaphragm may be included in a second assembly. The first assembly and the second assembly may be included in a stack where at least a portion of the second diaphragm is positioned to fit inside the polygonal-shaped depression in the stack.09-11-2014
20160107712Device For Measuring The Chain Force In A Bicycle - The present invention relates to a device for measuring the force present in the drive chain of an electric bicycle that basically comprises a metal plate (04-21-2016
073862637 Flexible element (e.g., beam, plate, or web) 16
20080196513Device For Pressure Measurement - A device for measuring the pressure in a gas, wherein the device comprises: a framework, a channel extending through the framework, the channel comprising in the axial direction a introductory section including an opening for receiving the gas, a measuring section having a wall, and a final section, the end of which is closed during measuring, measuring units for measuring radial forces acting on the wall of the measuring section, the measuring unit comprising a measuring body standing in mechanical contact with a first portion of the wall of the measuring section, a cooling body for transporting heat from the walls of the measuring section to the framework, wherein the cooling body is standing in thermal contact with a second portion of the wall of the measuring section and with the framework.08-21-2008
20080264185SENSING DEVICE AND METHODS FOR FORMING AND USING THE SAME - A sensing device includes a nanowire configured to deform upon exposure to a force, and a transducer for converting the deformation into a measurement. The nanowire has two opposed ends; and the transducer is operatively connected to one of the two opposed ends of the nanowire. The other of the two opposed ends of the nanowire is freestanding.10-30-2008
20110185825HORSESHOE LOAD CELL - A horseshoe load cell is designed to aid in optimizing sucker rod oil production, to improve the installation and removal process for polished rod load cells. This device includes top and bottom washers, a retaining plate and associated bolts. The washers may be used to hold the load cell in the proper position on the polished rod. These washers may also be made in a variety of sizes to accommodate a range of polished rod sizes. An anti-rotation bar can be included to eliminate conflicts between load cell cabling and rod-rotator operation. The anti-rotation bar may have a hole for a quick link to absorb cable tension, reserving the cable strain relief for weatherproofing. The combination of the washers, the specially designed arms and the hole placement in the arms centers the load between the strain gauges, maximizing measurement accuracy. Two sets of strain gauges may be placed on each arm symmetrically around the rod string, providing an effective measurement method. Varying arm sizes and hole placements can be included to allow for different load ratings.08-04-2011
20120297898DEFORMATION TESTING DEVICE - A deformation testing device includes a base holding a workpiece and a testing machine arranged on the base. The testing machine includes a distance-measurement device and a force-applying device. The distance-measurement device includes a distance meter metering a moving distance of an elastic portion of the workpiece and includes a measurement probe. The force-applying device includes a force meter and a transmission member. The force meter slidably is mounted on the base and includes a force-applying post. The transmission member includes a first post and a second post secured to the first post. The first post is aligned with the force-applying post transmits a force from the force-applying post to the elastic portion. The measurement probe abuts against the second post. The force meter applies and measures a force acted upon the elastic portion through the force-applying post and the first post.11-29-2012
20130167664PEDAL OPERATION AMOUNT DETECTING DEVICE - A pedal operation amount detecting device that is provided in an operating pedal apparatus including a transmitting member having a pedal arm of an operating pedal that is arranged so as to be pivotable about a support axis and that is depressed, and an output member to which a depression force is transmitted from the transmitting member and to which a reaction force corresponding to the depression force is applied, the pedal operation amount detecting device including a sensor member that is arranged on a load transmission path at a position offset from the transmitting member in a direction parallel to the support axis and that is deformed by the depression force and the reaction force, and the pedal operation amount detecting device electrically detecting a deformation of the sensor member.07-04-2013
20140026682IMPERCEPTIBLE MOTION SENSING DEVICE HAVING CONDUCTIVE ELASTOMER - The present invention is to provide an imperceptible motion sensing device, which includes a non-conductive elastomer made of a pliable and elastic non-conductor (e.g., polyurethane) and having a bumpy side formed with at least one sunken portion thereon, at least one conductive fiber positioned in the at least one sunken portion respectively (e.g., by sewing), and a conductive elastomer made of a pliable and elastic conductor (e.g., a conductive foam or conductive rubber) and provided on the bumpy side of the non-conductive elastomer. When the sensing device is compressed by an external force, corresponding portions of the conductive elastomer and the non-conductive elastomer are compressed and deformed, causing contact and hence electrical connection between the conductive elastomer and the at least one conductive fiber. Thus, the imperceptible motion sensing device not only provides more accurate and more sensitive signal detection, but also ensures consistent performance even after long-term use.01-30-2014
20140047930MONITORING DEVICE FOR MONITORING CLEANING ACTIVITY - A monitoring device for monitoring a user's cleaning activity, comprising a squeezable housing and a sensor housed within the housing, wherein the sensor is configured to sense at least pressure exerted to the monitoring device by the user during the cleaning activity.02-20-2014
20150033878METHOD FOR PRODUCING A PRESSURE SENSOR AND CORRESPONDING SENSOR - The invention relates to a method for producing a pressure sensor, comprising the following steps: assembling a support substrate with a deformable membrane on which strain gauges have been deposited, wherein the deformable membrane comprises a thinned area at the centre thereof, the support substrate is disposed on top of the deformable membrane, the support substrate comprises an upper surface and a lower surface in contact with the deformable membrane, and the support substrate also comprises lateral recesses arranged on top of the strain gauges and a central recess arranged on top of the thinned area of the membrane, so as to obtain a micromechanical structure; and, once the assembly has been obtained, depositing, in a single step, at least one conductive material on the upper surface of the support and in the lateral recesses of the support, said conductive material extending into the recesses in order to be in contact with the strain gauges so as to form electrical contacts in contact with the strain gauges.02-05-2015
20160103011ELASTICALLY DEFORMABLE LOAD BEARING STRUCTURE COMPRISING A MEASURING ASSEMBLY FOR THE LOAD - The invention relates to an elastically deformable load bearing structure comprising a measuring assembly for gauging the size of a load (04-14-2016
073862639 Cantilever 7
20090145246ALL-ELECTRIC PIEZOELECTRIC FINGER SENSOR (PEFS) FOR SOFT MATERIAL STIFFNESS MEASUREMENT - A PEFS (Piezoelectric Finger Sensor) acts as an “electronic finger” capable of accurately and non-destructively measuring both the Young's compression modulus and shear modulus of tissues with gentle touches to the surface. The PEFS measures both the Young's compression modulus and shear modulus variations in tissue generating a less than one-millimeter spatial resolution up to a depth of several centimeters. This offers great potential for in-vivo early detection of diseases. A portable hand-held device is also disclosed. The PEF offers superior sensitivity.06-11-2009
20110277562LOW PROFILE TRANSDUCER WITH HIGH MOMENT CAPACITY - A load transducer for use in an automated control system such as those used in robotic assemblies, and other linkage systems separated by joints. The transducer is capable of measuring force and moments transmitted by the joint of the robotic assembly. This localized sensory data is utilized by a microprocessor to control the motion of the linkages of the system. In addition to being very accurate and reliable, the Load transducer has a low profile and small size. This invention is easily manufactured using strain gage technology.11-17-2011
20130283934SENSOR ASSEMBLY AND MEDICAL DEVICE INCORPORATING SAME - Apparatus are provided for sensor assemblies and related medical devices. An embodiment of a sensor assembly includes a rigid structure and a beam structure having an outer portion in contact with the rigid structure and an inner portion. The beam structure includes one or more beams extending between the outer portion and the inner portion of the beam structure and a cantilevered portion extending from the inner portion to inhibit displacement of the inner portion toward the rigid structure. Each beam has a sensing element disposed thereon.10-31-2013
20140076067ALL ELECTRIC PIEZOELECTRIC FINGER SENSOR (PEFS) FOR SOFT MATERIAL STIFFNESS MEASUREMENT - A PEFS (Piezoelectric Finger Sensor) acts as an “electronic finger” capable of accurately and non-destructively measuring both the Young's compression modulus and shear modulus of tissues with gentle touches to the surface. The PEFS measures both the Young's compression modulus and shear modulus variations in tissue generating a less than one-millimeter spatial resolution up to a depth of several centimeters. This offers great potential for in-vivo early detection of diseases. A portable hand-held device is also disclosed. The PEF offers superior sensitivity.03-20-2014
20140083210DEVICE FOR MEASURING FORCE COMPONENTS, AND METHOD FOR ITS PRODUCTION - A device for measuring force components formed from a single crystal material, wherein the device comprises at least one cantilever beam inclined to a wafer plane normal and formed in one piece with a mass body, which mass body provides a mass of inertia. The mass body has a first and a second major surface which are substantially parallel with a wafer plane. A mass body cross section presents a portion which is substantially symmetrical along a centrally (in the thickness direction) located plane parallel with the wafer plane. Disclosed is also a method for its production and an accelerometer comprising at least one such device. The device allow for a more compact 3-axis accelerometer.03-27-2014
20160047702LOAD CELL FOR WEIGHT MEASUREMENT - The invention relates to a load cell for weight measurement with a load beam which has an overload protection.02-18-2016
20160187210SYSTEM AND METHOD TO MEASURE FORCE OR LOCATION ON AN L-BEAM - Force and location sensing systems and methods are disclosed. A method comprises bending a L-beam at an initially unknown location on a force-supporting portion of the L-beam, the L-beam substantially having a tension side and a compression side, measuring a first local stress at a first location on the tension side, measuring a second local stress at a second location on the tension side, measuring a third local stress at a third location on the compression side, and measuring a fourth local stress at a fourth location on the compression side. A weight-sensing storage system capable of tracking removed items is disclosed with a product image captured via a camera, a plurality of sensors on an L-beam, a first signal from the plurality of sensors indicating a first state prior to change of the product image, and a second signal indicating lower strain on the L-beam than the first signal.06-30-2016
073862641 Helical or spiral 5
20100037711FORCE MEASURING DEVICE - Force measuring device for measuring the force between a first element and a second element of an application, comprising a housing and a sensor arrangement, which is arranged in the housing, the sensor arrangement comprising a first part and a second part and the force between the first element and the second element determining a relative position between the first part and the second part, characterized by at least one spring element, which is positioned between the second element and a support region arranged on the housing, and is supported on the second element and the support region.02-18-2010
20100154566Method for Determining the Elastic Deformation of Components - The invention relates to a method for determining the elastic deformation of components, especially parallel kinematic devices, under a load. Said method is characterised in that the geometry of the articulation points on the fixed platform (06-24-2010
20110179886COMPRESSIVE FORCE MEASUREMENT DEVICE - A compressive force measurement device with a pressure-/voltage converter in chip technology features a spherical segment-shaped sensor area. The pressure-/voltage converter is disposed between one base disc and one cover disc, wherein the base disc and the cover disc are tensioned against one another by means of springs with essentially identical pulling force. Forces acting on the cover disc have the effect that the cover disc always positions itself perpendicularly to the direction of force, whereby some of the springs are additionally loaded and others are relieved and thereby a compensation of forces takes place that act obliquely on the compressive force measurement device.07-28-2011
20130333489DEVICE, METHOD AND SYSTEM FOR ADD ON ATTACHMENT OF APPLIED FORCE STRAIN SENSOR ONTO EXERCISE EQUIPMENT - A device, method, and system that allows the easy add on attachment of an applied-power sensor, assuring precise measurements over time, even in vibrating environments such as exercise environments. The device possesses structural qualities such that tightening the wrapping latch around a measured object/part presses a loaded spring between the object/part and the sensor, achieving and maintaining sufficient and constant contact, thus allowing continuously precise measuring. The device also includes a transmitter to transmit the measured data to an external data processing device and may include a processor to process the data before transmitting.12-19-2013
20150143927VEHICLE SEAT SUSPENSION MAT - A vehicle seat suspension mat (05-28-2015
073862642 Closed loop (e.g., ring or tube) 3
20110219888FORCE-MEASURING RING HAVING AN ANNULAR HOUSING - A force-measuring ring includes an annular housing which contains at least one piezoelectric measuring element, and a pressure transmission element which is attached to the housing via inner and outer circular-annular membrane areas. The inner and outer membrane areas of the force-measuring ring are situated on opposite sides of a symmetry plane defined by the at least one piezoelectric measuring element.09-15-2011
20140000388FORCE SENSOR AND ROBOT ARM INCLUDING FORCE SENSOR01-02-2014
20150075297HOLLOW PROFILE FOR A WEIGHT-IN-MOTION SENSOR - A WIM (weigh-in-motion) sensor has an oblong hollow profile and includes two force-transmission plates arranged parallel to each other. A tube is arranged between the plates and is integrally formed with the plates and defines a hollow space. Two supports that are arranged opposite one another are formed inside the hollow space, each support extending away from a respective plate and between which a measuring element is received centrally in the tube under preload. The tube includes two tube segments designed to be mirror-symmetrical with respect to each other, which join the plates together and on the inside adjoin the hollow space. The wall thickness of each tube segment has a relatively thick region between at least two relatively thin regions.03-19-2015

Patent applications in all subclasses Specific type of elastic member

Website © 2025 Advameg, Inc.