Class / Patent application number | Description | Number of patent applications / Date published |
073780000 | Capacitive | 25 |
20080202251 | Capacitive pressure sensor - A capacitive pressure comprises a laminated arrangement with a first flexible, electrically insulating carrier film carrying a first capacitor electrode, a second flexible, electrically insulating carrier film carrying a second capacitor electrode and a flexible, electrically insulating spacer film sandwiched between the first and second carrier films. The spacer film has a through-hole or recess therein, with respect to which the first and second capacitor electrodes are arranged opposite one another, in such a way that the first and second electrodes are brought closer together by resilient bending of the first and/or second carrier film into the through-hole or recess under the action of a compressive force acting on the pressure sensor. | 08-28-2008 |
20080210013 | Sealed capacitive sensor - A sealed capacitive sensor includes a substrate having a diaphragm forming a first plate of a capacitor; a second fixed plate of the capacitor spaced from the diaphragm and defining a predetermined dielectric gap and a sealing medium connecting together the substrate and fixed plate in an integrated structure and hermetically sealing the gap. | 09-04-2008 |
20080250864 | CAPACITIVE FORCE SENSOR - A force sensor is provided which has a capacitive sensor circuit incorporating a sensor capacitor having variable capacitance C | 10-16-2008 |
20080250865 | CAPACITIVE FORCE SENSOR HAVING SATURATED OUTPUT AT MINIMUM CAPACITANCE - A force sensor is provided having a capacitive sensor circuit incorporating a sensor capacitor having a variable capacitance C | 10-16-2008 |
20090120198 | GAP-CHANGE SENSING THROUGH CAPACITIVE TECHNIQUES - A gap-change sensing through capacitive techniques is disclosed. In one embodiment, an apparatus includes a first conductive surface and a second conductive surface substantially parallel to the first conductive surface, and a sensor to generate a measurement based on a change in a distance between the first conductive surface and the second conductive surface. The change in the distance may be caused by a deflection of the first conductive surface with respect to the second conductive surface, and the deflection may be a compressive force and/or an expansive force. The sensor may apply an algorithm that converts a change in capacitance to at least one of a change in voltage and/or a change in frequency to generate the measurement. The change in the distance may be caused by a load applied to the surface above the first conductive surface with respect to the second conductive surface. | 05-14-2009 |
20090158856 | CAPACITIVE STRAIN GAUGE SYSTEM AND METHOD - A system and methods of a capacitive strain gauge are disclosed. In one embodiment, a system includes a conductive element of a capacitive structure attached to a surface. The conductive element is comprised of an elongated member. An additional conductive element of the capacitive structure is attached to the surface, and the additional conductive element is comprised of an additional elongated member. The system includes an electrode coupled to the conductive element that applies a voltage to the conductive element when a capacitance is being determined. The system further includes an additional electrode coupled to the additional conductive element that receives an amplitude to determine a change in capacitance caused by a shape alteration of at least one of the conductive element, the additional conductive element, and a space between the conductive element and the additional conductive element. | 06-25-2009 |
20090158857 | ANTI-ENTRAPMENT SYSTEM - An anti-entrapment system for preventing an object from being entrapped by a translating device includes a sensor positionable adjacent to or on the translating device. The sensor has a non-conductive compressible jacket with a cavity, and first and second conductors positioned within the cavity opposite from one another. In response to an object pressing against the jacket, the jacket compresses from a non-compressed state in which the conductors are not in electrical contact to a compressed state in which the conductors are in electrical contact. The sensor has a compressible support either inside or outside of the cavity. In response to the object pressing against the jacket while the jacket is compressed, the support compresses to allow the jacket to compress further in order reduce pinching of the object by the translating device when the object is between the jacket and the translating device. | 06-25-2009 |
20090188325 | MEMS Capacitive Bending and Axial Strain Sensor - A three-dimensional micro-electro-mechanical-systems (MEMS) capacitive bending and axial strain sensor capacitor is described. Two independent comb structures, incorporating suspended polysilicon interdigitated fingers, are fabricated simultaneously on a substrate that can displace independently of each other while attached to a substrate undergoing bending or axial deformation. A change in spacing between the interdigitated fingers will output a change in capacitance of the sensor and is the primary mode of operation of the device. On the bottom and to the end of each comb structure, a glass pad is attached to the comb structure to allow for ample surface area for affixing the sensor to a substrate. During fabrication, tethers are used to connect each comb structure to maintain equal spacing between the fingers before attachment to the substrate. After attachment, the tethers are broken to allow independent movement of each comb structure. | 07-30-2009 |
20090205437 | FLEXIBLE APPARATUS AND METHOD TO ENHANCE CAPACITIVE FORCE SENSING - A flexible apparatus and method to enhance capacitive force sensing is disclosed. In one embodiment, a force measuring device includes a sensor capacitor having a fixed surface and a moveable surface substantially parallel to the fixed surface, at least one spring assembly (e.g., may deflect longitudinally and/or perpendicularly to a direction of the force) positioned between the fixed surface and the movable surface (e.g., the spring assembly may alter in height in response to a force applied perpendicular to the movable surface and to cause a change in the gap between the fixed surface and the movable surface), and a circuit to generate a measurement of the force based on an algorithm that considers a change in a capacitance of the sensor capacitor. A reference capacitor may adjust the measurement of the applied force based on one or more environmental conditions. | 08-20-2009 |
20090217768 | PIEZOELECTRIC MEASURING ELEMENT WITH TRANSVERSE EFFECT AND SENSOR COMPRISING SUCH A MEASURING ELEMENT - A piezoelectric measuring element comprises at least one bar with transverse effect which can be used with two conductor technology. Poles comprising the metallisations, electrodes and lines in the measuring element are embodied with one or more piezoelectric bars with transverse effect such that the electric capacitances thereof with respect to the housing are identical. There can be a completely symmetrical design of the poles. A capacitor from one pole to the housing can correspond to the difference in capacitance of both poles to the environment. | 09-03-2009 |
20090249885 | DIELECTROSTRICTIVE SENSOR FOR MEASURING DEFORMATION - An apparatus and method directed to a solid-state capacitance sensor for measuring a strain force on a dielectric including at least one pair of electrostriction sensors each sensor having at least two electrodes and each having a central axis. The central axes are disposed in a common plane and are oriented substantially mutually perpendicularly to one another. Preferably, at least two pairs of sensors, forming a rosette, are provided to facilitate multi-component analysis of a sample having dielectric properties under stress/strain. | 10-08-2009 |
20090314098 | ENTRAPMENT DETECTION AND PREVENTION DEVICE FOR OPENING/CLOSING MECHANISM - An entrapment prevention and detection device for an opening/closing mechanism detects entrapment with a simple structure and does not occupy much space. When a foreign object, such as a human body part approaches a window glass, such as an automobile window, the capacitance of a capacitive sensor increases. A control circuit compares a most recent capacitance obtained by a capacitance detection circuit with a previous value and if the most recent capacitance value is greater than the previous value, when the glass is being raised (closed), the control circuit determines that a foreign object has approached the glass and then stops or lowers (opens) the glass. | 12-24-2009 |
20090320607 | Micro-Electromechanical Capacitive Strain Sensor - A micro-electromechanical capacitive strain sensor. The micro-electromechanical capacitive strain sensor comprises a first bent beam, a second bent beam, and a straight center beam. The first bent beam, second bent beam, and straight center beam are aligned in the X-axis with the straight center beam located between the first and second bent beams. The first bent beam, second bent beam, and straight center beam are disposed between two anchors. The two anchors are aligned in the Y-axis. The first bent beam is bent away from the center beam and the second bent beam is bent towards the center beam to provide a set of differential capacitors with respect to the center beam, wherein the center beam serves as a common reference with respect to the first and second bent beams. | 12-31-2009 |
20100101329 | STRAIN AND DISPLACEMENT SENSOR AND SYSTEM AND METHOD FOR USING THE SAME - A capacitively-coupled strain sensor and methods are presented in which the strain on a structure is measured by the varying capacitance created by the displacement of one or more boards attached to the structure. | 04-29-2010 |
20100147084 | MEASURING DEVICE, ROCK BREAKING DEVICE AND METHOD OF MEASURING STRESS WAVE - The invention relates to a method of measuring a stress wave and to a measuring device and a rock breaking device. A percussion device ( | 06-17-2010 |
20100162824 | CAPACITIVE STRAIN SENSOR - Provided are capacitive strain sensors. In certain embodiments, the capacitive strain sensor can continuously and accurately measure strain in corrosive ambient conditions and may operate up to 370° C. or more in air. The sensor includes a differential capacitor that includes a bending beam structure. In some instances, the sensor is configured to increase the effect of strain in a substrate along a sensing axis while attenuating the effect of cross-axis strain. Also provided are methods of making the capacitive strain sensors, e.g., using Micro-Electro-Mechanical System (MEMS) fabrication techniques, and methods of using the capacitive strain sensors. | 07-01-2010 |
20110100133 | Mechanical Test Fixture With Submicron Tolerance - The mechanical test apparatus is a fixture utilizing capacitive gauge sensors, located in close proximity to a test specimen, to measure strain in miniature specimens. The upper collar is connected to the upper bolt which is connected to the cross head of the mechanical test machine and the lower collar is attached to the lower bolt which is attached to the load cell. The collars contain conductive target plates and capacitive gauge sensors oriented to form the two plate electrodes of a capacitor. These plates are precisely positioned and move as a mechanical test is performed. The measured voltage is proportional to the distance between the plates, thus allowing the strain to be calculated. The system can be configured to perform tensile, compression, and bending tests at submicron tolerances. | 05-05-2011 |
20110107842 | SYSTEM FOR SENSING AND DISPLAYING SOFTNESS AND FORCE - A sensing element for sensing the softness of an object by abutting the sensing element against the object and biasing the sensing element toward the object with a biasing force. The sensing element includes a deformable section, the deformable section being deformable between an undeformed configuration and a deformed configuration, the deformed configuration being achievable when the deformable section is abutted against and biased toward the object; a deformation sensor operatively coupled to the deformable section for sensing a deformation of the deformable section between the deformed and undeformed configurations; and a force sensor operatively coupled to the deformable section for sensing the biasing force exerted onto the deformable section by the object when the deformable section is biased toward the object with the biasing force. | 05-12-2011 |
20110314924 | STRUCTURE AND FABRICATION OF A MICROSCALE FLOW-RATE/SKIN FRICTION SENSOR - A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection. | 12-29-2011 |
20120055257 | PRESSURE SENSING OR FORCE GENERATING DEVICE - In one aspect, the present invention relates to a pressure sensing/force generating device comprising a non-planar substrate, a printed pressure sensitive element comprising (a) a piezoelectric material containing ink composition capable of producing a piezoelectric effect/piezoresistive effect and/or (b) a dielectric material containing ink composition capable of producing a capacitive effect. It also includes a first printed electrode comprising a conductive ink composition, and a second printed electrode comprising a conductive ink composition. The first and second electrodes are in electrical contact with the printed pressure sensitive element. The first and second printed electrodes and the printed pressure sensitive element collectively form a pressure sensitive junction, which is coupled to the non-planar substrate. The present invention further relates to medical devices comprising the pressure sensing/force generating device and methods of making such devices. | 03-08-2012 |
20130263672 | ANTI-ENTRAPMENT SYSTEM - An anti-entrapment system for preventing an object from being entrapped by a translating device such as a vehicle window includes a capacitance sensor and a controller. The sensor has a jacket with a cavity, a dielectric element within the cavity, and first and second electrical conductors. The conductors are within the cavity on opposite sides of the dielectric element such that the conductors are separated from one another by a separation distance. The capacitance of the sensor changes in response to an electrically conductive object moving in proximity to at least one of the conductors. The controller is configured to control a translating device as a function of the capacitance of the sensor. The jacket is attachable to a seal configured to receive the translating device. | 10-10-2013 |
20140150562 | THREE DIMENSIONAL TRANSDUCER - A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft. | 06-05-2014 |
20150059487 | Real Time Strain Sensing Solution - Strain sensing may be provided. First, a strain threshold for a circuit board may be determined. Then a strain capacitor may be selected that will fail when the circuit board is subjected to the strain threshold while the strain capacitor is mounted on the circuit board. The strain capacitor may be ceramic and may be in a commercially available size. The strain capacitor may then be mounted to the circuit board and monitored for failure. | 03-05-2015 |
20160043660 | DEVICE WITH ELECTRODE CONNECTED TO THROUGH WIRE, AND METHOD FOR MANUFACTURING THE SAME - A capacitive transducer includes a substrate having a first surface and a second surface opposite the first surface, the substrate including a through wire extending therethrough between the first surface and the second surface, and a cell on the first surface, the cell including a first electrode and a second electrode spaced apart from the first electrode with a gap between the first electrode and the second electrode. Conductive protective films are disposed over surfaces of the through wire on the first surface side and the second surface side of the substrate. | 02-11-2016 |
20160377409 | STRETCHABLE ELECTRODE, SENSOR SHEET AND CAPACITIVE SENSOR - Provided is a stretchable electrode which has excellent flexibility, stretchability and electrical conductivity and is capable of suppressing increase of the electric resistance in being elongated and the occurrence of variation in the electric resistance during repeated stretching and contracting. The stretchable electrode of the present invention comprises a base formed of an elastomer composition and an electrode main body integrated with the base, wherein the electrode main body is formed using multi-walled carbon nanotubes having a fiber length of 50 μm or more. | 12-29-2016 |