Class / Patent application number | Description | Number of patent applications / Date published |
065019000 | Slag, utilization | 6 |
20080256981 | Method and Device for Treating Fibrous Wastes for Recycling - The invention relates to a method for treating wastes, in particular from the production of mineral fibres such as fibreglass wool or rock fibres associated with organic binders and optionally with water or other metal and/or organic matters consisting in fusing a waste mass ( | 10-23-2008 |
20090193849 | METHOD FOR STABILIZING SLAG AND NOVEL MATERIALS PRODUCED THEREBY - Disclosed herein is a method for stabilizing slag, which is an oxide byproduct generated after completion of refining in a converter process for converting molten iron into molten steel via de-carbonization or in an electric arc furnace process for producing molten steel via melting of scrap iron, during iron/steel making processes, and a novel material produced thereby. More particularly, disclosed is a method for stabilizing and recycling slag, wherein converter slag or electric arc furnace slag, which is difficult to recycle because of free lime (i.e. free calcium oxide (CaO) referring to single-phase CaO) remaining therein after cooling, is subjected to appropriate treatments after completion of converter blowing, thereby restricting generation of free lime, and consequently, minimizing differentiation/expansion, environmental pollution and instability of slag. The method for stabilizing slag includes allowing molten slag to fall, injecting high-pressure gas to falling molten slag to separate the molten slag into fine droplets, and quenching the fine droplets with the injected gas and surrounding atmosphere. | 08-06-2009 |
20100162757 | Novel process - A process for preparing a loose grain abrasive material comprising the steps of providing a mixture of electric arc furnace dust, sand and glass, and melting such mixture at a temperature of less than 1430 degrees Celsius. | 07-01-2010 |
20130152632 | METHOD AND DEVICE FOR MANUFACTURING VITREOUS SLAG - A process for manufacturing a vitreous slag including
| 06-20-2013 |
20130167586 | METHOD FOR MANUFACTURING PLATE INORGANIC NONMETAL MATERIAL USING MOLTEN SLAG - A method for manufacturing a plate inorganic nonmetal material by using a molten slag by introducing the molten slag into a pool for preserving heat and modifying, wherein a temperature of the molten slag is 1450° C.-1600° C., and modifying a viscosity and/or a color of the molten slag according to requirements of the product manufactured. The modified molten slag is introduced into a float process furnace using tin or tin alloy carrier forming a plate of inorganic nonmetal material which is discharged at 1000-1300° C. The plate is maintained at 600° C.-900° C. for 0.5-2 hours in a non-reducing atmosphere, and then cooled to a room temperature within 1-2 hours. An energy-saving and efficient method for comprehensively utilizing the blast furnace slag is provided. The produced plate inorganic nonmetal material has such characteristics as stable color quality, abrasion resistance, pressure resistance, strong adhesiveness, low coefficient of expansion and low shrinkage ratio. | 07-04-2013 |
20150135770 | METHOD FOR PRODUCING SILICON FOR SOLAR CELLS BY METALLURGICAL REFINING PROCESS - In order to produce metallurgical grade silicon and solar cell grade polysilicon in batches, a method of the present invention comprises: a step of reduction in an arc furnace, consisting of removing C and CO in a silicon reduction atmosphere using silica stone and carbon black by an arc so as to produce metallurgical grade silicon; a step of refining by slag consisting of removing phosphorus (P) and boron (B) by slag; a step of refining by unidirectional solidification consisting of removing metal impurities (Fe, Al, Ti, Mn, etc.) by means of unidirectional solidification; and a step of steam plasma-electromagnetism continuous refining consisting of charging a furnace with the unidirectionally solidified silicon and removing boron (B) by a steam plasma torch. | 05-21-2015 |