Class / Patent application number | Description | Number of patent applications / Date published |
065427000 | Consolidating preform (e.g., sintering, etc.) | 9 |
20100071421 | Soot Radial Pressing For Optical Fiber Overcladding - A method and apparatus for making an optical fiber preform. The apparatus has an outer wall and an inner wall. The outer wall surrounds the inner wall and the inner wall surrounds an inner cavity of the apparatus. A consolidated glass rod is deposited in the inner cavity after which particulate glass material, such as glass soot, is deposited in the inner cavity around the glass rod. A radially inward pressure is applied against the particulate glass material to pressurize the particulate glass material against the glass rod. | 03-25-2010 |
20100122558 | Apparatus and Method of Sintering an Optical Fiber Preform - A method and apparatus for consolidating an optical fiber preform, wherein the optical fiber preform is located in a furnace comprising a muffle tube, said muffle tube comprising an inner section and an outer section surrounding the inner section. The inner and outer sections are comprised of different materials, and the preform is exposed to a pressure less than 0.8 atm while simultaneously exposing said preform to a temperature of at least 1000 C. | 05-20-2010 |
20120055199 | METHOD OF MANUFACTURING OPTICAL FIBER PREFORM - Provided is a method of manufacturing an optical fiber preform, comprising obtaining a base material ingot by sintering a porous glass base material at a high temperature to change the porous glass base material into glass while retaining an unsintered portion at one end thereof that is not completely changed to glass; and while relatively moving a heating means in a longitudinal direction of the base material ingot, applying a tensile force to a heated portion and beginning to extend the unsintered portion from one side to decrease a diameter of and extend the base material ingot. | 03-08-2012 |
20130186147 | POROUS GLASS BASE MATERIAL THERMAL INSULATING MEMBER AND SINTERING METHOD - In order to prevent thermal deformation of a thermal insulating board and scattering of radiant heat when sintering porous glass base material, provided is a thermal insulating member is arranged on a dummy rod above a porous glass base material, which is formed by depositing glass fine particles on the outside of a starting member formed by connecting the dummy rod to at least one end of a core rod, when heating the porous glass base material to achieve sintering. The thermal insulating member comprises a cylindrical insulating cylinder; an insulating upper board connected to a top end of the insulating cylinder; an insulating lower board connected to a bottom end of the insulating cylinder; and a thermal deformation preventing member that prevents thermal deformation of at least one of the insulating cylinder, the insulating upper board, and the insulating lower board. | 07-25-2013 |
20140345332 | APPARATUS FOR SINTERING A GLASS PREFORM FOR AN OPTICAL FIBER AND SINTERING METHOD THEREOF - The present invention provides an apparatus for sintering a glass preform for an optical fiber, wherein the glass preform for the optical fiber is received in a muffle tube and is heated in an atmospheric gas while being suspended on a shaft and supported thereon, the apparatus comprising: a first gas seal that is provided at an upper end of the muffle tube, the shaft being inserted therethrough; a buffering chamber that is provided above the first gas seal and that covers the shaft; a second gas seal that is provided at an upper end of the buffering chamber, the shaft being inserted therethrough; and a unit that introduces the atmospheric gas exhausted from the muffle tube into the buffering chamber. | 11-27-2014 |
20150128649 | METHODS AND APPARATUSES FOR FORMING OPTICAL PREFORMS FROM GLASS SOOT - Methods and apparatuses for forming optical preforms from silica glass soot are disclosed. According to one embodiment, a method for forming an optical preform may include loading silica glass soot in a mold cavity of a mold body. The mold body may be rotated at a rotational speed sufficient to force the silica glass soot towards an inner wall of the mold body. Thereafter the silica glass soot is compressed in an inward radial direction as the mold body is rotated to form a soot compact layer. | 05-14-2015 |
20160115070 | HYGROSCOPIC ADDITIVES FOR SILICA SOOT COMPACTS AND METHODS FOR FORMING OPTICAL QUALITY GLASS - A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a hygroscopic additive, forming a silica soot compact, and removing the hygroscopic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided. | 04-28-2016 |
065428000 | Collapsing tube | 2 |
20110100064 | METHOD AND APPARATUS FOR MANUFACTURING AN OPTICAL FIBER CORE ROD - A multi-functional method and apparatus are disclosed for producing a low hydroxyl ion-containing core rod from a tube suitable for the production of low-water optical fibers. The method and apparatus combine the use of process steps of (1) hermetically sealing a tubular quartz handle of a tubular porous core preform to a tube used to feed the porous preform into a sintering furnace, (2) dehydration and sintering, and (3) elongation of the sintered preform under vacuum, all without exposing the preform's central aperture surface to ambient atmosphere. | 05-05-2011 |
20120198892 | METHOD FOR PRODUCING OPTICAL FIBER PREFORM - A method for producing an optical fiber preform according to the present invention includes an etching step of heating a silica-based glass tube using a heat source continuously traversed in the longitudinal direction of the glass tube to etch the inner surface portion of the glass tube containing impurities while an etching gas is allowed to flow into the glass tube. The glass tube has a maximum alkali metal concentration of 500 to 20,000 atomic ppm, a maximum chlorine concentration of 0 to 1000 atomic ppm, and a maximum fluorine concentration of 0 to 10,000 atomic ppm. In the etching step, the maximum temperature of the outer surface of the glass tube is in the range of 1900° C. to 2250° C., and the heating time is set to a time equal to or less than a time (min) given by | 08-09-2012 |