Class / Patent application number | Description | Number of patent applications / Date published |
065392000 | Laser utilized | 12 |
20090199597 | Systems and methods for collapsing air lines in nanostructured optical fibers - Systems and methods of collapsing the air lines in the air line-containing region of a nanostructure optical fiber are disclosed. One method includes initiating irradiation of a portion of the nanostructure optical fiber from essentially opposite directions with at least first and second laser beams having substantially equal power and essentially the same mid-infrared wavelength. The method includes continuing the irradiation for an irradiation time t | 08-13-2009 |
20100101277 | METHOD OF FUSING OPTICAL FIBERS WITHIN A SPLICE PACKAGE - The present invention relates to methods of connecting optical fibers. In a first aspect, the method proceeds by using a ferrule device having a passage adapted to apply radial pressure to optically align and hold in position opposed fiber ends, and fusing said fiber ends held by said ferrule device. In another aspect, the method of the present invention uses a ferrule device to optically align without mechanized adjustment and hold in position opposed fiber ends with a gap where said fiber ends meet, where the fibers have a temperature of fusion that is higher than a melting temperature of said ferrule device. The method then transmits radiation directly onto said fiber ends without significant direct transmission onto said ferrule device to generate heat in said fiber ends and fuse said fiber ends held by said ferrule device. | 04-29-2010 |
20100229604 | Indirect heat type double-clad crystal fiber fabrication method - A double-clad optical fiber fabrication method including the steps of: preparing a crystal fiber, inserting the crystal fiber into a silica capillary, attaching a sapphire tube to the periphery of the silica capillary, and applying a laser beam to the sapphire tube to increase the temperature of the sapphire tube and to further fuse the silica capillary with thermal radiation to have the fused silica capillary be wrapped about the crystal fiber, thereby forming the desired double-clad optical fiber. | 09-16-2010 |
20100294001 | METHOD OF MAKING TRANSPARENT LIGHT EMITTING MEMBERS - A method of making an illuminator out of a light guide using a laser to cut a pattern of U shaped notches or grooves in at least one side of the light guide. The laser may be moved at a substantially constant or variable speed during continuous or intermittent pulsing of the laser to cut a plurality of notches or grooves of a desired depth, width, spacing, relative position, diameter and/or surface finish in the light guide. | 11-25-2010 |
20120324959 | HIGH TEMPERATURE STABLE FIBER GRATING SENSOR AND METHOD FOR PRODUCING SAME - A method of producing a thermally stable grating allows the grating to be placed in environments where temperatures reach 1000° C. These gratings may be concatenated so as to form a sensor array. The method requires a step of lowering the characteristic intensity threshold of a waveguide by at least 25%, followed by irradiating the waveguide with femtosecond pulses of light having a sufficient intensity and for a sufficient duration to write the grating so that at least 60% of the grating remains after exposures of at least 10 hours at a temperature of at least 1000° C. Pre-writing a Type I grating before writing a minimal damage Type II grating lowers the characteristic threshold of the waveguide so that a stable low damage type II grating can be written; alternatively providing a hydrogen or deuterium loaded waveguide before writing the grating lowers the characteristic threshold of the waveguide. | 12-27-2012 |
20130025325 | Laser Diode Array with Fiber Optic Terminaton for Surface Treatment of Materials - Individually operable laser diodes in an array are associated with optical fibers for treatment of a material. Each laser diode has a generally Gaussian or similar profile. A guide block receives optical fiber terminal distal ends and enables irradiation of a surface for treatment with overlapping profiles. A control system controls individual laser diodes to achieve desired illumination profiles for a given process. The process is performed in a suitable environment which may include a vacuum system, controlled gaseous environment, or in a doping medium such as a surface coating or even a liquid. Optional relay optics interposed between the terminal distal ends and the treatment material allows distant relaying and reimaging. An optical isolator assembly may be interposed between the relay optics and the treatment material. The system and related methods allow direct irradiation from laser diodes to treat materials. | 01-31-2013 |
20130047676 | METHOD FOR PRODUCING OPTICAL FIBER HAVING CONTROLLED PERTURBATIONS - A method for producing an optical fiber is provided. The method includes the steps of drawing an optical fiber from a heated glass source in a furnace and introducing index perturbations to the optical fiber via a plurality of perturbation sources arranged at a plurality of different azimuthal locations. The index perturbations are introduced synchronously at different locations along the axial length of the fiber by the plurality of perturbation sources in a generally helical pattern on the outside surface of the fiber in one embodiment. According to another embodiment, the index perturbations are introduced by the plurality of perturbation sources at different frequencies. | 02-28-2013 |
20140137604 | OPTICAL FIBER AND METHOD OF MANUFACTURING OPTICAL FIBER - An optical fiber having excellent strength that can be manufactured at low cost, as well as a method for making such optical fiber, is provided. An optical fiber | 05-22-2014 |
20140298864 | Laser-Based Splicing of Glass Fibers Onto Optical Components - The invention relates to a method for laser-based splicing of a glass fiber ( | 10-09-2014 |
20150336842 | METHOD FOR MANUFACTURING BENT OPTICAL FIBER - An embodiment of the invention relates to a bent optical fiber manufacturing method for manufacturing a bent optical fiber in which a bent region with a desired radius of curvature is formed, while maintaining an optical transmission loss within a permissible range. The method has a pre-step of preparing an optical fiber comprised of silica-based glass, a bend portion forming step of forming a bend portion in a partial region of the optical fiber, and a laser light irradiating step of irradiating the thus-formed bend portion with laser light. | 11-26-2015 |
20160016843 | METHOD FOR MANUFACTURING BENT OPTICAL FIBER - The present invention relates to a method for manufacturing a bent optical fiber while suppressing diameter reduction of the optical fiber and realizing a desired radius of curvature thereof. In an optical fiber prepared, a plurality of irradiation regions arranged along the longitudinal direction of the optical fiber are set as a heated section with infrared laser pulsed light. In each irradiation region, the optical fiber is bent at a predetermined angle in a bend processing portion softened by irradiation with the infrared laser pulsed light. The optical fiber is bent in the bend processing portions of all the irradiation regions, thereby obtaining a bent optical fiber having a predetermined radius of curvature in the heated section. | 01-21-2016 |
20160054522 | METHOD FOR REALIZING AN OPTICAL WAVEGUIDE IN A SUBSTRATE BY MEANS OF A FEMTOSECOND LASER - A method for realizing an optical waveguide in a substrate by means of a femtosecond laser system, the waveguide including a birefringence axis tilted by a predetermined angle for at least a segment, is disclosed. The method includes preparing a substrate including a free surface, focusing a femtosecond laser beam into the substrate, in order to induce a refractive index modification of a volume of such substrate around the focal region. The method further includes varying a propagation direction of the femtosecond laser beam to reach a propagation direction describing a predetermined non-vanishing angle with respect to the normal to the free surface of the substrate, and translating the focal region with respect to the substrate, in order to generate the waveguide segment. | 02-25-2016 |